Skip to main content
Log in

Review of Ionic Liquids in Microextraction Analysis of Pesticide Residues in Fruit and Vegetable Samples

  • Review
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The objective of this work is to provide a critical review of the use of ionic liquids in the microextraction of pesticide residues in fruits and vegetables. It includes an assessment of the advantages and limitations of current applications of ionic liquids in microextraction techniques. The review also aims to illustrate the impact of ionic liquids on the development of novel sorbent materials for analytical applications. The unique physicochemical properties of ionic liquids make them ideal sorbents in separation techniques. Their number of applications in analytical separation has increased considerably over the past 5 years. Therefore, this review focuses on the synthesis, purification, functionalization, and application of ionic liquids for pesticide residue analysis in fruits and vegetables with different sample preparation procedures, covering articles published in the literature since their first application in 2009.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pyrzynska K (2013) Use of nanomaterials in sample preparation. TrAC Trends Anal Chem 43:100–108. https://doi.org/10.1016/j.trac.2012.09.022

    Article  CAS  Google Scholar 

  2. Arthur CL, Killam LM, Buchholz KD, Pawliszyn J, Berg JR (1992) Automation and optimization of solid-phase microextraction. Anal Chem 64:1960–1966.

    CAS  Google Scholar 

  3. Abdel-Rehim M (2011) Microextraction by packed sorbent (MEPS): a tutorial. Anal Chim Acta 701(2):119–128. https://doi.org/10.1016/j.aca.2011.05.037

    Article  CAS  PubMed  Google Scholar 

  4. Altun Z, Abdel-Rehim M (2008) Study of the factors affecting the performance of microextraction by packed sorbent (MEPS) using liquid scintillation counter and liquid chromatography-tandem mass spectrometry. Anal Chim Acta 630(2):116–123. https://doi.org/10.1016/j.aca.2008.09.067

    Article  CAS  PubMed  Google Scholar 

  5. Abdulra’uf LB, Sirhan AY, Tan GH (2012) Recent developments and applications of liquid phase microextraction in fruits and vegetables analysis. J Sep Sci 35(24):3540–3553. https://doi.org/10.1002/jssc.201200427

    Article  CAS  PubMed  Google Scholar 

  6. Abdulra’uf LB, Tan GH (2014) Review of SBSE technique for the analysis of pesticide residues in fruits and vegetables. Chromatogr 77(1–2):15–24. https://doi.org/10.1007/s10337-013-2566-8

    Article  CAS  Google Scholar 

  7. Liu H, Dasgupta PK (1996) Analytical chemistry in a drop. Solvent extraction in a microdrop. Anal Chem 68(11):1817–1821. https://doi.org/10.1021/ac960145h

    Article  CAS  PubMed  Google Scholar 

  8. Liu H, Dasgupta PK (1996) A liquid drop: a windowless optical cell and a reactor without walls for flow injection analysis. Anal Chim Acta 326(1–3):13–22

    CAS  Google Scholar 

  9. Jeannot MA, Przyjazny A, Kokosa JM (2010) Single drop microextraction—development, applications and future trends. J Chromatogr A 1217(16):2326–2336. https://doi.org/10.1016/j.chroma.2009.10.089

    Article  CAS  PubMed  Google Scholar 

  10. Rezaee M, Yamini Y, Faraji M (2010) Evolution of dispersive liquid-liquid microextraction method. J Chromatogr A 1217(16):2342–2357. https://doi.org/10.1016/j.chroma.2009.11.088

    Article  CAS  PubMed  Google Scholar 

  11. Pedersen-Bjergaard S, Rasmussen KE, Grønhaug Halvorsen T (2000) Liquid–liquid extraction procedures for sample enrichment in capillary zone electrophoresis. J Chromatogr A 902(1):91–105. https://doi.org/10.1016/s0021-9673(00)00738-x

    Article  CAS  PubMed  Google Scholar 

  12. Pezo D, Salafranca J, Nerín C (2007) Development of an automatic multiple dynamic hollow fibre liquid-phase microextraction procedure for specific migration analysis of new active food packagings containing essential oils. J Chromatogr A 1174(1–2):85–94. https://doi.org/10.1016/j.chroma.2007.08.033

    Article  CAS  PubMed  Google Scholar 

  13. Baltussen E, Cramers CA, Sandra PJF (2002) Sorptive sample preparation—a review. Anal Bioanal Chem 373(1–2):3–22. https://doi.org/10.1007/s00216-002-1266-2

    Article  CAS  PubMed  Google Scholar 

  14. Kokosa JM (2013) Advances in solvent-microextraction techniques. TrAC Trends Anal Chem 43:2–13

    CAS  Google Scholar 

  15. Tan GH, Chai MK (2016) Evaluation of different Sample extraction techniques of pesticides residue analysis in food by GC-MS/MS and LC-MS/MS techniques. Int J Agric Life Sci 2(2):18–37

    Google Scholar 

  16. Pawliszyn J, Pawliszyn B, Pawliszyn M (1997) Solid phase microextarction (SPME). Chem Educ 2(4):1–7

    Google Scholar 

  17. Zhang B-T, Zheng X, Li H-F, Lin J-M (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chim Acta 784:1–17. https://doi.org/10.1016/j.aca.2013.03.054

    Article  CAS  PubMed  Google Scholar 

  18. Tian J, Xu J, Zhu F, Lu T, Su C, Ouyang G (2013) Application of nanomaterials in sample preparation. J Chromatogr A 1300:2–16. https://doi.org/10.1016/j.chroma.2013.04.010

    Article  CAS  PubMed  Google Scholar 

  19. Kissoudi M, Samanidou V (2018) Recent advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules 23:6. https://doi.org/10.3390/molecules23061437

    Article  CAS  Google Scholar 

  20. Wen Y, Chen L, Li J, Liu D, Chen L (2014) Recent advances in solid-phase sorbents for sample preparation prior to chromatographic analysis. TrAC Trends Anal Chem 59:26–41. https://doi.org/10.1016/j.trac.2014.03.011

    Article  CAS  Google Scholar 

  21. Zaijun L, Xiulan S, Junkang L (2011) Ionic liquid as novel solvent for extraction and separation in analytical chemistry. In: Kokorin A (ed) Ionic Liquids: applications and perspectives. InTech, Rijeka, Croatia, pp 153–180

    Google Scholar 

  22. Abdulra’uf LB, Tan GH (2016) Use of carbon nanotubes for the analysis of pesticide residues in fruits and vegetables. J AOAC Int 99(6):1415–1425. https://doi.org/10.5740/jaoacint.16.0275

    Article  Google Scholar 

  23. Ghaemi F, Amiri A, Yunus R (2014) Methods for coating solid-phase microextraction fibers with carbon nanotubes. TrAC Trends Anal Chem 59:133–143. https://doi.org/10.1016/j.trac.2014.04.011

    Article  CAS  Google Scholar 

  24. Kataoka H (2002) Automated sample preparation using in-tube solid-phase microextraction and its application—a review. Anal Bioanal Chem 373:31–45. https://doi.org/10.1007/s00216-002-1269-z

    Article  CAS  PubMed  Google Scholar 

  25. Lucena R, Cárdenas S (2017) Ionic liquids in sample preparation. Comprehens Anal Chem. https://doi.org/10.1016/bs.coac.2017.01.007

    Article  Google Scholar 

  26. Kataoka H (2010) Recent developments and applications of microextraction techniques in drug analysis. Anal Bioanal Chem 396:339–364. https://doi.org/10.1007/s00216-009-3076-2

    Article  CAS  PubMed  Google Scholar 

  27. Ghandi K (2014) A review of ionic liquids, their limits and applications. Green Sustainable Chem 4:44–53

    CAS  Google Scholar 

  28. Wang H, Hu L, Li W, Yang X, Lu R, Zhang S, Zhou W, Gao H, Li J (2017) In-syringe dispersive liquid-liquid microextraction based on the solidification of ionic liquids for the determination of benzoylurea insecticides in water and tea beverage samples. Talanta 162:625–633. https://doi.org/10.1016/j.talanta.2016.10.035

    Article  CAS  PubMed  Google Scholar 

  29. Anastas PT, Kirchhoff MM (2002) Origins, current status and future challenges of green chemistry. Acc Chem Res 35:686–694

    CAS  PubMed  Google Scholar 

  30. Deetlefs M, Seddon KR (2010) The green synthesis of ionic liquids. In: Wasserscheid P, Stark A (eds) Handbook of green chemistry, vol 6: ionic liquids. WILEY-VCH, Weinheim

    Google Scholar 

  31. Ebrahimi M, Es’haghi Z, Samadi F, Hosseini MS (2011) Ionic liquid mediated sol-gel sorbents for hollow fiber solid-phase microextraction of pesticide residues in water and hair samples. J Chromatogr A 1218(46):8313–8321. https://doi.org/10.1016/j.chroma.2011.09.058

    Article  CAS  PubMed  Google Scholar 

  32. Saraji M, Rezaei B, Boroujeni MK, Bidgoli AAH (2013) Polypyrrole/sol-gel composite as a solid-phase microextraction fiber coating for the determination of organophosphorus pesticides in water and vegetable samples. J Chromatogr A 1279:20–26

    CAS  PubMed  Google Scholar 

  33. Wan Ibrahim WA, Farhani H, Sanagi MM, Aboul-Enein HY (2010) Solid phase microextraction using new sol-gel hybrid polydimethylsiloxane-2-hydroxymethyl-18-crown-6-coated fiber for determination of organophosphorous pesticides. J Chromatogr A 1217(30):4890–4897. https://doi.org/10.1016/j.chroma.2010.05.050

    Article  CAS  PubMed  Google Scholar 

  34. Barahona F, Turiel E, Martín-Esteban A (2011) Supported liquid membrane-protected molecularly imprinted fibre for solid-phase microextraction of thiabendazole. Anal Chim Acta 694(1–2):83–89

    CAS  PubMed  Google Scholar 

  35. Gao L, Chen L, Li X (2014) Magnetic molecularly imprinted polymers based on carbon nanotubes for extraction of carbamates. Microchim Acta 182(3–4):781–787. https://doi.org/10.1007/s00604-014-1388-1

    Article  CAS  Google Scholar 

  36. Saraji M, Jafari MT, Mossaddegh M (2016) Carbon nanotubes@silicon dioxide nanohybrids coating for solid-phase microextraction of organophosphorus pesticides followed by gas chromatography–corona discharge ion mobility spectrometric detection. J Chromatogr A 1429:30–39. https://doi.org/10.1016/j.chroma.2015.12.008

    Article  CAS  PubMed  Google Scholar 

  37. Song X-Y, Shi Y-P, Chen J (2013) Carbon nanotubes-reinforced hollow fibre solid-phase microextraction coupled with high performance liquid chromatography for the determination of carbamate pesticides in apples. Food Chem 139:246–252

    CAS  PubMed  Google Scholar 

  38. Tan GH, Abdulra’uf LB (2012) Recent developments and applications of microextraction techniques for the analysis of pesticide residues in fruits and vegetables. In: Soundararajan RP (ed) Pesticides—recent trends in pesticide residue assay. InTech, Rijeka, pp 171–190. doi: 10.5772/3329

    Google Scholar 

  39. Han D, Row KY (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426. https://doi.org/10.3390/molecules15042405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Flieger J, Grushka EB, Czajkowska-Żelazko A (2014) Ionic liquids as solvents in separation processes. Austin J Anal Pharm Chem 1(2):1–8

    Google Scholar 

  41. Joshi MD, Anderson JL (2012) Recent advances of ionic liquids in separation science and mass spectrometry. RSC Adv 2:5470–5484. https://doi.org/10.1039/c2ra20142a

    Article  CAS  Google Scholar 

  42. Tunckol M, Durand J, Serp P (2012) Carbon nanomaterial—ionic liquid hybrids. Carbon 50(4):4303–4334

    CAS  Google Scholar 

  43. Trujillo-Rodriguez MJ, Rocío-Bautista P, Pino V, Afonso AM (2013) Ionic liquids in dispersive liquid-liquid microextraction. TrAC Trends Anal Chem 51:87–106

    CAS  Google Scholar 

  44. Sun P, Armstrong DW (2010) Ionic liquids in analytical chemistry. Anal Chim Acta 661:1–16

    CAS  PubMed  Google Scholar 

  45. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2010) The roles of ionic liquids in sorptive microextraction techniques. TrAC Trends Anal Chem 29(7):602–616. https://doi.org/10.1016/j.trac.2009.11.009

    Article  CAS  Google Scholar 

  46. Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217(16):2268–2286. https://doi.org/10.1016/j.chroma.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  47. Martín-Calero A, Pino V, Afonso AM (2011) Ionic liquids as a tool for determination of metals and organic compounds in food analysis. TrAC Trends Anal Chem 30(10):1598–1619. https://doi.org/10.1016/j.trac.2011.04.023

    Article  CAS  Google Scholar 

  48. Amde M, Liu J-f, Pang L (2015) Environmental application, fate, effects and concerns of ionic liquids: a review. Environ Sci Technol 49(21):12611–12627

    CAS  PubMed  Google Scholar 

  49. Talavera-Prieto NMC, Ferreira AGM, Simões PN, Carvalho PJ, Mattedi S, Coutinho JAP (2014) Thermophysical characterization of N-methyl-2-hydroxyethylammonium carboxilate ionic liquids. J Chem Thermodyn 68:221–234

    CAS  Google Scholar 

  50. Mai NL, Ahn K, Koo Y-M (2014) Methods for recovery of ionic liquids—a review. Process Biochem 49:872–881

    CAS  Google Scholar 

  51. Delgado B, Pino V, Anderson JL, Ayala JH, Afonso AM, González V (2012) An in-situ extraction-preconcentration method using ionic liquid-based surfactants for the determination of organic contaminants contained in marine sediments. Talanta 99:972–983

    CAS  PubMed  Google Scholar 

  52. Zhao D, Liu M, Zhang J, Li J, Ren P (2013) Synthesis, characterization, and properties of imidazole dicationic ionic liquids and their application in esterification. Chem Engr J 221:99–104

    CAS  Google Scholar 

  53. Luczak J, Paszkiewicz M, Krukowska A, Malankowska A, Zaleska-Medynska A (2016) Ionic liquids for nano- and microstructures preparation. Part 1: Properties and multifunctional role. Adv Colloid Interf Sci 230:13–28. https://doi.org/10.1016/j.cis.2015.08.006

    Article  CAS  Google Scholar 

  54. Dietz ML (2006) Ionic Liquids as Extraction Solvents: Where do We Stand? Sep Sci Technol 41:2047–2063

    CAS  Google Scholar 

  55. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium-based ionic liquids. J Chem Soc Chem Commun 1992:965–967

    Google Scholar 

  56. Escudero LB, Castro Grijalba A, Martinis EM, Wuilloud RG (2013) Anal Bioanal Chem 405:7597–7613

    CAS  PubMed  Google Scholar 

  57. Zhang Y, Lee HK (2012) Anal Chim Acta 750:120–126

    CAS  PubMed  Google Scholar 

  58. Mohammadi A, Tavakoli R, Kamankesh M, Rashedi H, Attaran A, Delavar M (2013) Enzyme-assisted extraction and ionic liquid-based dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of patulin in apple juice and method optimization using central composite design. Anal Chim Acta 804:104–110

    CAS  PubMed  Google Scholar 

  59. Ho TD, Canestraro AJ, Anderson JL (2011) Ionic liquids in solid-phase microextraction: a review. Anal Chim Acta 695(1–2):18–43. https://doi.org/10.1016/j.aca.2011.03.034

    Article  CAS  PubMed  Google Scholar 

  60. Asensio-Ramos M, Hernandez-Borges J, Borges-Miquel TM, Rodriguez-Delgado MA (2011) Ionic liquid-dispersive liquid-liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection. J Chromatogr A 1218:4808–4816

    CAS  PubMed  Google Scholar 

  61. Kabir A, Furton KG, Malik A (2013) Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. TrAC Trends Anal Chem 45:197–218. https://doi.org/10.1016/j.trac.2012.11.014

    Article  CAS  Google Scholar 

  62. Martinis EM, Berton P, Wuilloud RG (2014) Ionic liquid-based microextraction techniques for trace-element analysis. TrAC Trends Anal Chem 60:54–70

    CAS  Google Scholar 

  63. Wang L, Zhang D, Xu X, Zhang L (2016) Application of ionic liquid-based dispersive liquid phase microextraction for highly sensitive simultaneous determination of three endocrine disrupting compounds in food packaging. Food Chem 197:754–760

    CAS  PubMed  Google Scholar 

  64. Yu H, Ho TD, Anderson JL (2013) Ionic liquid and polymeric ionic liquid coatings in solid-phase microextraction. TrAC Trends Anal Chem 45:219–232

    CAS  Google Scholar 

  65. Zhao R-S, Zhang L-L, Wang X (2011) Dispersive liquid-phase microextraction using ionic liquid as extractant for the enrichment and determination of DDT and its metabolites in environmental water samples. Anal Bioanal Chem 399:1287–1293

    CAS  PubMed  Google Scholar 

  66. Gao Y, Zhou Q, Xie G, Yao Z (2012) Temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with HPLC with ultraviolet detector for the determination of fungicides. J Sep Sci 35:3569–3574

    CAS  PubMed  Google Scholar 

  67. Zhou Q, Zhang X, Xie G (2011) Preconcentration and determimation of pyrethroid insecticides in water with ionic liquid dispersive liquid-phase microextraction in combination with high performance liquid chromatography. Anal Methods 3:356–361

    CAS  PubMed  Google Scholar 

  68. Shu J, Li C, Liu M, Liu H, Feng X, Tan W, Liu F (2012) Role of counteranions in sol-gel-derived alkoxyl-functionalized ionic-liquid-based organic-inorganic hybrid coatings for SPME. Chromatography 75(23–24):1421–1433. https://doi.org/10.1007/s10337-012-2323-4

    Article  CAS  Google Scholar 

  69. Steltenpohl P, Graczová E (2014) Use of ionic liquids in extraction. Acta Chim Slov 7(2):129–133

    CAS  Google Scholar 

  70. Xu J, Zheng J, Tian J, Zhu F, Zeng F, Su C, Ouyang G (2013) New materials in solid-phase microextraction. TrAC Trends Anal Chem 47:68–83. https://doi.org/10.1016/j.trac.2013.02.012

    Article  CAS  Google Scholar 

  71. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38(7):1009–1036. https://doi.org/10.1016/j.progpolymsci.2013.04.002

    Article  CAS  Google Scholar 

  72. Sarafraz-Yazdi A, Vatani H (2013) A solid phase microextraction coating based on ionic liquid sol-gel technique for determination of benzene, toluene, ethylbenzene and o-xylene in water samples using gas chromatography flame ionization detector. J Chromatogr A 1300:104–111. https://doi.org/10.1016/j.chroma.2013.03.039

    Article  CAS  PubMed  Google Scholar 

  73. Ribeiro C, Ribeiro AR, Maia AS, Goncalves VMF, Tiritan ME (2014) New trends in sample preparation techniques for environmental analysis. Crit Rev Anal Chem 44:142–185. https://doi.org/10.1080/10408347.2013.833850

    Article  CAS  PubMed  Google Scholar 

  74. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YC (2013) Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J Nat Prod 76(11):2162–2173

    CAS  PubMed  Google Scholar 

  75. Liu M, Zhou X, Chen Y, Liu H, Feng X, Qiu G, Liu F, Zeng Z (2010) Innovative chemically bonded ionic liquids-based sol-gel coatings as highly porous, stable and selective stationary phases for solid phase microextraction. Anal Chim Acta 683(1):96–106. https://doi.org/10.1016/j.aca.2010.10.004

    Article  CAS  PubMed  Google Scholar 

  76. Shu J, Xie P, Lin D, Chen R, Wang J, Zhang B, Liu M, Liu H, Liu F (2014) Two highly stable and selective solid phase microextraction fibers coated with crown ether functionalized ionic liquids by different sol-gel reaction approaches. Anal Chim Acta 806:152–164. https://doi.org/10.1016/j.aca.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  77. Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H (2006) Why are ionic liquids liquid? A simple explanation based on lattice and solvation energies. J Am Chem Soc 128(41):13427–13434

    CAS  PubMed  Google Scholar 

  78. Nawala J, Dawidzuik B, Dziedzic D, Gordon D, Popiel S (2018) Applications of ionic liquids in analytical chemistry with a particular emphasis on their use in solid-phase microextraction. TrAC Trends Anal Chem 105:18–86. https://doi.org/10.1016/j.trac.2018.04.010

    Article  CAS  Google Scholar 

  79. Mallakpour S, Dinari M (2012) Ionic liquids as green solvents: progress and prospects. In: Mohammad A, Inamuddin (eds) Green solvents II: properties and applications of ionic liquids. Springer, Dordrecht, pp 1-32

    Google Scholar 

  80. Messali M (2016) A facile and green microwave-assisted synthesis of new functionalized picolinium-based ionic liquids. Arab J Chem 9(S1):S564–S569. https://doi.org/10.1016/j.arabjc.2011.06.030

    Article  CAS  Google Scholar 

  81. McIntosh AJS, Griffith J, Gräsvik J (2016) Methods of synthesis and purification of ionic liquids. In: Kuzmina O, Hallett JP (eds) Application, purification, and recovery of ionic liquids. Elsevier, Amsterdam, pp 59–99

    Google Scholar 

  82. Messali M, Ahmed SA (2011) A green microwave-assisted synthesis of new pyridazinium-based ionic liquids as an environmentally friendly alternative. Green Sustain Chem 1:70–75. https://doi.org/10.4236/gsc.2011.13012

    Article  CAS  Google Scholar 

  83. Messali M, Moussa Z, Alzahrani AY, El-Naggar MY, ElDouhaibi AS, Judeh ZMA, Hammouti B (2013) Synthesis, characterization and the antimicrobial activity of new eco-friendly ionic liquids. Chemosphere 91(11):1627–1634

    CAS  PubMed  Google Scholar 

  84. Wu W, Li W, Han B, Zhang Z, Jiang T, Liu Z (2005) A green and effective method to synthesize ionic liquids: supercritical CO2 route. Green Chem 7:701–704

    CAS  Google Scholar 

  85. Imperato G, König B, Chiappe C (2007) Ionic green solvents from renewable resources. Eur J Org Chem 7:1049–1058

    Google Scholar 

  86. Handy ST (2009) Greener solvents: room temperature ionic liquids from biorenewable sources. Chem Eur J 9:2938–2944. https://doi.org/10.1002/chem.200304799

    Article  CAS  Google Scholar 

  87. Yang YK, Xie XL, Cu W (2012) Functionalization of carbon nanotubes with ionic liquids. In: Mohammad A, Inamuddin (eds) Green solvents II: properties and applications of ionic liquids. Springer, Dordrecht, p 399

    Google Scholar 

  88. Shearrow AM, Harris GA, Fang L, Sekhar PK, Nguyen LT, Turner EB, Bhansali S, Malik A (2009) Ionic liquid-mediated sol-gel coatings for capillary microextraction. J Chromatogr A 1216(29):5449–5458. https://doi.org/10.1016/j.chroma.2009.04.093

    Article  CAS  PubMed  Google Scholar 

  89. Zhou X, Xie P-f, Wang J, Zhang B-b, Liu M-m, Liu H-l, Feng X-h (2011) Preparation and characterization of novel crown ether functionalized ionic liquid-based solid-phase microextraction coatings by sol-gel technology. J Chromatogr A 1218(23):3571–3580. https://doi.org/10.1016/j.chroma.2011.03.048

    Article  CAS  PubMed  Google Scholar 

  90. Ma H, Wang L, Liu Z, Guo Y (2016) Ionic liquid–graphene hybrid nanosheets-based electrochemical sensor for sensitive detection of methyl parathion. Int J Environ Anal Chem 96(2):161–172. https://doi.org/10.1080/03067319.2015.1114111

    Article  CAS  Google Scholar 

  91. Pena-Pereira F, Namiesni J (2014) Ionic liquids and deep eutectic mixtures: sustainable solvents for extraction processes. ChemSusChem 7(7):1784–1800. https://doi.org/10.1002/cssc.201301192

    Article  CAS  PubMed  Google Scholar 

  92. Polo-Luque ML, Simonet BM, Valcárcel M (2013) Functionalization and dispersion of carbon nanotubes in ionic liquids. TrAC Trends Anal Chem 47:99–110. https://doi.org/10.1016/j.trac.2013.03.007

    Article  CAS  Google Scholar 

  93. He Z, Alexandridis P (2017) Ionic liquid and nanoparticle hybrid systems: emerging applications. Adv Colloid Interf Sci 244:54–70. https://doi.org/10.1016/j.cis.2016.08.004

    Article  CAS  Google Scholar 

  94. Casado N, Perez-Quintanilla D, Morante-Zarcero S, Sierra I (2017) Current development and applications of ordered mesoporous silicas and other sol–gel silica-based materials in food sample preparation for xenobiotics analysis. TrAC Trends Anal Chem 88:167–184. https://doi.org/10.1016/j.trac.2017.01.001

    Article  CAS  Google Scholar 

  95. Bagheri M, Masteri-Farahani M, Ghorbani M (2013) Synthesis and characterization of heteropolytungstate-ionic liquid supported on the surface of silica coated magnetite nanoparticles. J Magn Magn Mater 327:58–63

    CAS  Google Scholar 

  96. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salt triggered by single-walled carbon nanotubes. Science 300:2072–2074

    CAS  PubMed  Google Scholar 

  97. Neouze M-A, Kronstein M, Tielens F (2014) Ionic nanoparticle networks: development and perspectives in the landscape of ionic liquid based materials. Chem Commun 50(75):10929–10936

    CAS  Google Scholar 

  98. He Z, Alexandridis P (2015) Nanoparticles in Ionic Liquids: Interaction and organization. Phys Chem Chem Phys 17(28):18238–18261. https://doi.org/10.1039/C5CP0162G

    Article  CAS  PubMed  Google Scholar 

  99. Neouze M-A (2010) About the interactions between nanoparticles and imidazolium moieties: emergence of original hybrid materials. J Mater Chem 20(43):9593–9607

    CAS  Google Scholar 

  100. Vickackaite V, Padarauskas A (2012) Ionic liquids in microextraction techniques. Cent Eur J Chem 10(3):652–674

    Google Scholar 

  101. Clark KD, Nacham O, Purslow JA, Pierson SA, Anderson JL (2016) Magnetic ionic liquids in analytical chemistry. Anal Chim Acta 934:9–21

    CAS  PubMed  Google Scholar 

  102. Wang HF, Zhu YZ, Lin JP, Yan XP (2008) Fabrication of molecularly imprinted hybrid monoliths via a room temperature ionic liquid-mediated nonhydrolytic sol-gel route for chiral separation of zolmitriptan by capillary electrochromatography. Electrophoresis 29(4):952–959

    CAS  PubMed  Google Scholar 

  103. Domanska U (2009) General review of ionic liquids and their properties. In: Koel M (ed) Ionic liquids in chemical analysis. Taylor and Francis, Boca Raton, pp 1–71

    Google Scholar 

  104. Clark KD, Emaus MN, Varona M, Bowers AN, Anderson JL (2018) Ionic liquids: solvents and sorbents in sample preparation. J Sep Sci 41(1):209–235. https://doi.org/10.1002/jssc.201700864

    Article  CAS  PubMed  Google Scholar 

  105. Zhang J, Gao H, Peng B, Li S, Zhou Z (2011) Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid–liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples. J Chromatogr A 1218(38):6621–6629. https://doi.org/10.1016/j.chroma.2011.07.102

    Article  CAS  PubMed  Google Scholar 

  106. Peng B, Yang X, Zhang J, Du F, Zhou W, Gao H, Lu R (2013) Comparison of two ultrasound-enhanced microextractions combined with HPLC for determining acaricides in water. J Sep Sci 36:2196–2202

    CAS  PubMed  Google Scholar 

  107. Gao Z, Deng Y, Hu X, Yang S, Sun C, He H (2013) Determination of organophosphate esters in water samples using an ionic liquid-based sol-gel fiber for headspace solid-phase microextraction coupled to gas chromatography-flame photometric detector. J Chromatogr A 1300:141–150. https://doi.org/10.1016/j.chroma.2013.02.089

    Article  CAS  PubMed  Google Scholar 

  108. Gao X, Pan M, Fang G, Jing W, He S, Wang S (2013) An ionic liquid modified dummy molecularly imprinted polymer as a solid-phase extraction material for the simultaneous determination of nine organochlorine pesticides in environmental and food samples. Anal Methods 5(21):6128–6134. https://doi.org/10.1039/c3ay41083h

    Article  CAS  Google Scholar 

  109. Feng J, Sun M, Bu Y, Luo C (2015) Facile modification of multi-walled carbon nanotubes–polymeric ionic liquids-coated solid-phase microextraction fibers by on-fiber anion exchange. J Chromatogr A 1393:8–17. https://doi.org/10.1016/j.chroma.2015.03.022

    Article  CAS  PubMed  Google Scholar 

  110. Hu L, Zhang P, Shan W, Wang X, Li S, Zhou W, Gao H (2015) In situ metathesis reaction combined with liquid-phase microextraction based on the solidification of sedimentary ionic liquids for the determination of pyrethroid insecticides in water samples. Talanta 144:98–104. https://doi.org/10.1016/j.talanta.2015.05.077

    Article  CAS  PubMed  Google Scholar 

  111. Hassan J, Sarkouhi M (2016) Miniaturized counter current liquid–liquid extraction for organophosphorus pesticides determination. Arab J Chem 9:38–42

    CAS  Google Scholar 

  112. Chen F, Song Z, Nie J, Yu G, Li Z, Lee M (2016) Ionic liquid-based carbon nanotube coated magnetic nanoparticles as adsorbent for the magnetic solid phase extraction of triazole fungicides from environmental water. RSC Adv 6:81877–81885

    CAS  Google Scholar 

  113. Luo M, Liu D, Zhao L, Han J, Liang Y, Wang P, Zhou Z (2014) A novel magnetic ionic liquid modified carbon nanotube for the simultaneous determination of aryloxyphenoxy-propionate herbicides and their metabolites in water. Anal Chim Acta 852:88–96

    CAS  PubMed  Google Scholar 

  114. Latifeh F, Yamini Y, Seidi S (2016) Ionic liquid-modified silica-coated magnetic nanoparticles: promising adsorbents for ultra-fast extraction of paraquat from aqueous solution. Environ Sci Pollut Res 23:4411–4421

    CAS  Google Scholar 

  115. Yang L, Su P, Chen X, Zhang R, Yang Y (2015) Microwave-assisted synthesis of poly(ionic liquid)-coated magnetic nanoparticles for the extraction of sulfonylurea herbicides from soil for HPLC. Anal Methods 7:3246–3252

    CAS  Google Scholar 

  116. Liu G, Su P, Yang L, Yang Y (2015) Preparation of novel ionic-liquid-modified magnetic nanoparticles by a microwave-assisted method for sulfonylurea herbicides extraction. J Sep Sci 38:3936–3944

    CAS  PubMed  Google Scholar 

  117. Zheng X, He L, Duan Y, Jiang X, Xiang G, Zhao W, Zhang S (2014) Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks. J Chromatogr A 1358:39–45

    CAS  PubMed  Google Scholar 

  118. Yang M, Wu X, Jia Y, Xi X, Yang X, Lu R, Zhang S, Gao H, Zhou W (2016) Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology. Anal Chim Acta 906:118–127

    CAS  PubMed  Google Scholar 

  119. Wu X, Li X, Yang M, Zeng H, Zhanga S, Lu R, Gao H, Xu D (2017) An ionic liquid-based nanofluid of titanium dioxide nanoparticles for effervescence-assisted dispersive liquid–liquid extraction for acaricide detection. J Chromatogr A 1497:1–8

    CAS  PubMed  Google Scholar 

  120. Albishri HM, Aldawsari NAM, El-Hady DA (2016) Ultrasound-assisted temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with reversed-phase liquid chromatography for determination of organophosphorus pesticides in water samples. Electrophoresis 37(19):2462–2469. https://doi.org/10.1002/elps.201600107

    Article  CAS  PubMed  Google Scholar 

  121. Padilla-Alonso DJ, Garza-Tapia M, Chávez-Montes A, González-Horta A, Waksman de Torresa NH, Castro-Ríos R (2017) New temperature-assisted ionic liquid-based dispersive liquid–liquid microextraction method for the determination of glyphosate and aminomethylphosphonic acid in water samples. J Liq Chromatogr Rel Techn 40(3):147–155

    CAS  Google Scholar 

  122. Fan C, Liang Y, Dong H-G, Ding G, Zhang W, Tang G, Yang J, Kong D, Wang D, Cao Y (2017) In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples. Anal Chim Acta 975:20–29. https://doi.org/10.1016/j.aca.2017.04.036

    Article  CAS  PubMed  Google Scholar 

  123. Rykowska I, Ziemblińska J, Nowak I (2018) Modern approaches in dispersive liquid-liquid microextraction (DLLME) based on ionic liquids: a review. J Mol Liq 259:319–339. https://doi.org/10.1016/j.molliq.2018.03.043

    Article  CAS  Google Scholar 

  124. Gure A, Lara FJ, García-Campaña AM, Megersa N, del Olmo-Iruela M (2015) Vortex-assisted ionic liquid dispersive liquid–liquid microextraction for the determination of sulfonylurea herbicides in wine samples by capillary high-performance liquid chromatography. Food Chem 170:348–353

    CAS  PubMed  Google Scholar 

  125. Tadesse B, Teju E, Gure A, Megersa N (2015) Ionic-liquid-based dispersive liquid–liquid microextraction combined with high-performance liquid chromatography for the determination of multiclass pesticide residues in water samples. J Sep Sci 38(5):829–835

    CAS  PubMed  Google Scholar 

  126. Chen X, Bian Y, Liu F, Teng P, Sun P (2017) Comparison of micellar extraction combined with ionic liquid based vortex-assisted liquid–liquid microextraction and modified quick, easy, cheap, effective, rugged, and safe method for the determination of difenoconazole in cowpea. J Chromatogr A 1518:1–7. https://doi.org/10.1016/j.chroma.2017.08.042

    Article  CAS  PubMed  Google Scholar 

  127. Amde M, Tan ZQ, Liu R, Liu JF (2015) Nanofluid of zinc oxide nanoparticles in ionic liquid for single drop liquid microextraction of fungicides in environmental waters prior to high performance liquid chromatographic analysis. J Chromatogr A 1395:7–15

    CAS  PubMed  Google Scholar 

  128. Amiri A, Saadati-Moshtaghin HR, Zonoz FM (2018) A hybrid material composed of a polyoxometalate of type BeW12O40 and an ionic liquid immobilized onto magnetic nanoparticles as a sorbent for the extraction of organophosphorus pesticides prior to their determination by gas chromatography. Microchim Acta 185(3):176. https://doi.org/10.1007/s00604-018-2713-x

    Article  CAS  Google Scholar 

  129. Dong Y, Yang J, Liu X, Zhang L (2016) Ionic liquids-modified CaFe2O4/MWCNTs nano-hybrid as an electrode material for detection of carbendazim. J Electrochem Soc 163(13):B652–B658. https://doi.org/10.1149/2.0811613jes

    Article  CAS  Google Scholar 

  130. Pang L, Pang R, Ge L, Zheng L, Zhao J, Zhang H (2016) Trace determination of organophosphate esters in environmental water samples with an ionogel-based nanoconfined ionic liquid fiber coating for solid-phase microextraction with gas chromatography and flame photometric detection. J Sep Sci 39(22):4415–4421. https://doi.org/10.1002/jssc.201600662

    Article  CAS  PubMed  Google Scholar 

  131. Pena-Pereira F, Marcinkowski L, Kloskowski K, Namieśnika J (2015) Ionogel fibres of bis(trifluoromethylsulfonyl)imide anion-based ionic liquids for the headspace solid-phase microextraction of chlorinated organic pollutants. Analyst 140(21):7417–7422. https://doi.org/10.1039/c5an01337b

    Article  CAS  PubMed  Google Scholar 

  132. Galán-Cano F, Lucena R, Cárdenas S, Valcárcel M (2013) Dispersive micro-solid phase extraction with ionic liquid-modified silica for the determination of organophosphate pesticides in water by ultra performance liquid chromatography. Microchem J 106:311–317. https://doi.org/10.1016/j.microc.2012.08.016

    Article  CAS  Google Scholar 

  133. Liang P, Wang F, Wan Q (2013) Ionic liquid-based ultrasound-assisted emulsification microextraction coupled with high performance liquid chromatography for the determination of four fungicides in environmental water samples. Talanta 105:57–62. https://doi.org/10.1016/j.talanta.2012.11.065

    Article  CAS  PubMed  Google Scholar 

  134. Li M, Zhang J, Li Y, Peng B, Zhou W, Gao H (2013) Ionic liquid-linked dual magnetic microextraction: a novel and facile procedure for the determination of pyrethroids in honey samples. Talanta 107:81–87. https://doi.org/10.1016/j.talanta.2012.12.056

    Article  CAS  PubMed  Google Scholar 

  135. Yang M, Wu X, Xi X, Zhang P, Yang X, Lu R, Zhou W, Zhang S, Gao H, Li J (2016) Using β-cyclodextrin/attapulgite immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem 197(B):1064-1072. doi:10.1016/j.foodchem.2015.11.107

    CAS  PubMed  Google Scholar 

  136. Yang M, Xi X, Wu X, Lu R, Zhou W, Zhang S, Gao H (2015) Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled to high performance liquid chromatography for the fast determination of four fungicides in water samples. J Chromatogr A 1381:37–47. https://doi.org/10.1016/j.chrom.a.2015.01.016

    Article  CAS  PubMed  Google Scholar 

  137. Vazquez MM, Vazquez PP, Galera MM, Moreno AU (2014) Comparison of two ionic liquid dispersive liquid-liquid microextraction approaches for the determination of benzoylurea insecticides in wastewater using liquid chromatography-quadrupole-linear ion trap-mass spectrometry: Evaluation of green parameters. J Chromatogr A 1356:1–9. https://doi.org/10.1016/j.chroma.2014.06.032

    Article  CAS  PubMed  Google Scholar 

  138. Yu H, Merib J, Anderson JL (2016) Faster dispersive liquid-liquid microextraction methods using magnetic ionic liquids as solvents. J Chromatogr A 1463:11–19. https://doi.org/10.1016//j.chroma.2016.08.007

    Article  CAS  PubMed  Google Scholar 

  139. Wang Y, Sun Y, Xu B, Li X, Jin R, Zhang H, Song D (2014) Magnetic ionic liquid-based dispersive liquid–liquid microextraction for the determination of triazine herbicides in vegetable oils by liquid chromatography. J Chromatogr A 1373:9–16

    CAS  PubMed  Google Scholar 

  140. Wang Y, Sun Y, Xu B, Li X, Wang X, Zhang H, Song D (2015) Matrix solid-phase dispersion coupled with magnetic ionic liquid dispersive liquid–liquid microextraction for the determination of triazine herbicides in oilseeds. Anal Chim Acta 888:67–74

    CAS  PubMed  Google Scholar 

  141. Marube LC, Caldas SS, Dos Santos EO, Michaelsen A, Primel EG (2018) Multi-residue method for determination of thirty-five pesticides, pharmaceuticals and personal care products in water using ionic liquid–dispersive liquid–liquid microextraction combined with liquid chromatography-tandem mass spectrometry. J Braz Chem Soc 29(6):1349-1359. doi:10.21577/0103-5053.20170234

  142. Wang Y-L, You L-Q, Mei Y-W, Liu J-P, He L-J (2016) Benzyl functionalized ionic liquid as new extraction solvent of dispersive liquid-liquid microextraction for enrichment of organophosphorus pesticides and aromatic compounds. Chin J Anal Chem 44(6):942–949. https://doi.org/10.1016/S1872-2040(16)60937-4

    Article  CAS  Google Scholar 

  143. Cacho JI, Campillo N, Viñas P, Hernández-Córdoba M (2018) In situ ionic liquid dispersive liquid-liquid microextraction coupled to gas chromatography-mass spectrometry for the determination of organophosphorus pesticides. J Chromatogr A 1559:95–101. https://doi.org/10.1016/j.chroma.2017.12.059

    Article  CAS  PubMed  Google Scholar 

  144. Wang K, Jiang J, Kang M, Li D, Zang S, Tian S, Zhang H, Yu A, Zhang Z (2017) Magnetical hollow fiber bar collection of extract in homogenous ionic liquid microextraction of triazine herbicides in water samples. Anal Bioanal Chem 409(10):2569–2579. https://doi.org/10.1007/s00216-017-0201-5

    Article  CAS  PubMed  Google Scholar 

  145. Ravelo-Pérez LM, Hernández-Borges J, Asensio-Ramos M, Rodríguez-Delgado MÁ (2009) Ionic liquid based dispersive liquid–liquid microextraction for the extraction of pesticides from bananas. J Chromatogr A 1216(43):7336–7345. https://doi.org/10.1016/j.chroma.2009.08.012

    Article  CAS  PubMed  Google Scholar 

  146. Ravelo-Perez LM, Hernandez-Borges J, Herrera-Herrera AV, Angel Rodriguez-Delgado M (2009) Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid-liquid microextraction. Anal Bioanal Chem 395(7):2387–2395. https://doi.org/10.1007/s00216-009-3133-x

    Article  CAS  PubMed  Google Scholar 

  147. Santalad A, Srijaranai S, Burakham R, Glennon JD, Deming RL (2009) Anal Bioanal Chem 394:1307–1317

    CAS  PubMed  Google Scholar 

  148. Vichapong J, Burakham R, Srijaranai S, Grudpan K (2011) Room temperature imidazolium ionic liquid: a solvent for extraction of carbamates prior to liquid chromatographic analysis. Talanta 84:1253–1258. https://doi.org/10.1016/j.talanta.2011.01.002

    Article  CAS  PubMed  Google Scholar 

  149. Zhang L, Chen F, Liu S, Chen B, Pan C (2012) Ionic liquid-based vortex-assisted dispersive liquid-liquid microextraction of organophosphorus pesticides in apple and pear. J Sep Sci 35(18):2514–2519

    CAS  PubMed  Google Scholar 

  150. Abdulra’uf LB, Sirhan AY, Tan GH (2015) Applications of experimental design to the optimization of microextraction sample preparation parameters for the analysis of pesticide residues in fruits and vegetables. J AOAC Int 98(5):1171–1185. https://doi.org/10.5740/jaoacint.SGE3Abdulrauf

    Article  CAS  PubMed  Google Scholar 

  151. Stalikas C, Fiamegos Y, Sakkas V, Albanis T (2009) Developments on chemometric approaches to optimize and evaluate microextraction. J Chromatogr A 1216(2):175–189. https://doi.org/10.1016/j.chroma.2008.11.060

    Article  CAS  PubMed  Google Scholar 

  152. He L, Luo X, Jiang X, Qu L (2010) A new 1,3-dibutylimidazolium hexafluorophosphate ionic liquid-based dispersive liquid-liquid microextraction to determine organophosphorus pesticides in water and fruit samples by high-performance liquid chromatography. J Chromatogr A 1217(31):5013–5020

    CAS  PubMed  Google Scholar 

  153. Zhang Y, Wang X, Lin C, Fang G, Wang S (2012) A novel SPME fiber chemically linked with 1-vinyl-3-hexadecylimidazolium hexafluorophosphate Ionic Liquid Coupled with GC for the simultaneous determination of pyrethroids in vegetables. Chromatogr 75:789–797. https://doi.org/10.1007/s10337-012-2244-2

    Article  CAS  Google Scholar 

  154. Zhang J, Li M, Li Y, Li Z, Wang F, Li Q, Zhou W, Lu R, Gao H (2013) Application of ionic-liquid-supported magnetic dispersive solid-phase microextraction for the determination of acaricides in fruit juice samples. J Sep Sci 36(19):3249–3255. https://doi.org/10.1002/jssc.201300358

    Article  CAS  PubMed  Google Scholar 

  155. Zhang J, Liang Z, Guo H, Gao P, Lu R, Zhou W, Zhang S, Gao H (2013) Ionic liquid-based totally organic solvent-free emulsification microextraction coupled with high performance liquid chromatography for the determination of three acaricides in fruit juices. Talanta 115:556–562. https://doi.org/10.1016/j.talanta.2013.06.010

    Article  CAS  PubMed  Google Scholar 

  156. Han D, Tang B, Row KH (2014) Determination of pyrethroid pesticides in tomato using ionic liquid-based dispersive liquid-liquid microextraction. J Chromatogr Sci 52(3):232–237. https://doi.org/10.1093/chromsci/bmt017

    Article  CAS  PubMed  Google Scholar 

  157. Yang M, Zhang P, Hu L, Lu R, Zhou W, Zhang S, Gao H (2014) Ionic liquid-assisted liquid-phase microextraction based on the solidification of floating organic droplets combined with high performance liquid chromatography for the determination of benzoylurea insecticide in fruit juice. J Chromatogr A 1360:47–56

    CAS  PubMed  Google Scholar 

  158. Tian M, Cheng R, Ye J, Liu X, Jia Q (2014) Preparation and evaluation of ionic liquid-calixarene solid-phase microextraction fibres for the determination of triazines in fruit and vegetable samples. Food Chem 145:28–33. https://doi.org/10.1016/j.foodchem.2013.08.029

    Article  CAS  PubMed  Google Scholar 

  159. Chen X, You X, Liu F, Hou F, Zhang X (2015) Ionic-liquid-based manual-shaking-and ultrasound-assisted, surfactant-enhanced emulsification microextraction for the determination of three fungicide residues in juice samples. J Sep Sci 38(1):93–99. https://doi.org/10.1002/jssc.201400970

    Article  CAS  PubMed  Google Scholar 

  160. Pelit FO, Pelit L, Dizdas TN, Ertas HCA, Yalcinkaya EE, Turkmen H, Ertas FN (2015) A novel polythiopene-ionic liquid modified clay composite solid phase microextraction fiber: preparation, characterization and application to pesticide analysis. Anal Chim Acta 859:37–45. https://doi.org/10.1016/j.aca.2014.12.043

    Article  CAS  PubMed  Google Scholar 

  161. Zhang Y, Zhang Y, Nie J, Jiao B, Zhao Q (2016) Determination of triazole fungicide residues in fruits by QuEChERS combined with ionic liquid-based dispersive liquid-liquid microextraction: optimization using response surface methodology. Food Anal Methods 9:3509–3519. https://doi.org/10.1007/s12161-016-0548-9

    Article  Google Scholar 

  162. Haghi JN, Husain SW, Azar PA, Tehran MS (2017) Fabrication of silica nanoparticle-PEG-ionic liquid SPME fiber for determination of pesticide residues in tomato. IIOAB J 8(5):11–17

    CAS  Google Scholar 

  163. You X, Chen X, Liu F, Hou F, Li Y (2018) Ionic liquid–based air-assisted liquid–liquid microextraction followed by high performance liquid chromatography for the determination of five fungicides in juice samples. Food Chem 239:354–359. https://doi.org/10.1016/j.foodchem.2017.06.074

    Article  CAS  PubMed  Google Scholar 

  164. Pang L, Yang P, Pang R, Lu X, Xiao J, Li S, Zhang H, Zhao J (2018) Ionogel-based ionic liquid coating for solid-phase microextraction of organophosphorus pesticides from wine and juice samples. Food Anal Methods 11(1):270–281. https://doi.org/10.1007/s12161-017-0997-9

    Article  Google Scholar 

  165. Lawal A, Wong RCS, Tan GH, Abdulra’uf LB (2018) Determination of pesticide residues in fruit and vegetables by high-performance liquid chromatography-tandem mass spectrometry with multivariate response surface methodology. Anal Lett In Press. https://doi.org/10.1080/00032719.2018.1459655

    Article  Google Scholar 

  166. SANTE-11813 (2017) Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed. https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf. Accessed 12 June 2019

  167. Lawal A, Wong RCS, Tan GH, Abdulra’uf LB, Alsharif AMA (2018) Multi-pesticide residues determination in samples of fruits and vegetables using chemometrics approach to QuEChERS-dSPE coupled with ionic liquid-based DLLME and LC–MS/MS. Chromatogr 81(5):759–768. https://doi.org/10.1007/s10337-018-3511-7

    Article  CAS  Google Scholar 

  168. Wang S, Liu C, Yang S, Liu F (2013) Ionic liquid-based dispersive liquid-liquid microextraction following high-performance liquid chromatography for the determination of fungicides in fruit juices. Food Anal Methods 6(2):481–487. https://doi.org/10.1007/s12161-012-9402-x

    Article  CAS  Google Scholar 

  169. Wang J, Xiong J, Baker GA, Jiji RD, Baker SN (2013) Developing microwave-assisted ionic liquid microextraction for the detection and tracking of hydrophobic pesticides in complex environmental matrices. RSC Adv 3(38):17113–17119. https://doi.org/10.1039/c3ra41139g

    Article  CAS  Google Scholar 

  170. Ruan C, Zhao X, Liu C (2015) Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile-based extraction with dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J Sep Sci 38(17):2931–2937. https://doi.org/10.1002/jssc.201401162

    Article  CAS  PubMed  Google Scholar 

  171. Vichapong J, Burakham R, Srijaranai S (2016) Ionic liquid-based vortex-assisted liquid–liquid microextraction for simultaneous determination of neonicotinoid insecticides in fruit juice samples. Food Anal Methods 9(2):419–426. https://doi.org/10.1007/s12161-015-0209-4

    Article  Google Scholar 

  172. Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qa S, Zhu G (2009) Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew Chem Int Ed 48:9457–9460

    CAS  Google Scholar 

  173. Wu M, Chen G, Liu P, Zhou W, Jia Q (2016) Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. Analyst 141(1):243–250. https://doi.org/10.1039/C5AN01372K

    Article  CAS  PubMed  Google Scholar 

  174. Zhang Y, Zhang Y, Zhao Q, Chen W, Jiao B (2016) Vortex-assisted ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the determination of triazole fungicides in fruit juices. Food Anal Methods 9(3):596–604. https://doi.org/10.1007/s12161-015-0223-6

    Article  Google Scholar 

  175. Farajzadeh MA, Bamorowat M, Mogaddam MRA (2016) Ringer tablet-based ionic liquid phase microextraction: application in extraction and preconcentration of neonicotinoid insecticides from fruit juice and vegetable samples. Talanta 160:211–216. https://doi.org/10.1016/j.talanta.2016.03.097

    Article  CAS  PubMed  Google Scholar 

  176. Wang H, Yang X, Hu L, Gao H, Lu R, Zhang S, Zhou W (2016) Detection of triazole pesticides in environmental water and juice samples using dispersive liquid-liquid microextraction with solidified sedimentary ionic liquids. New J Chem 40(5):4696–4704. https://doi.org/10.1039/c5nj03376d

    Article  CAS  Google Scholar 

  177. Farajzadeh MA, Bamorowat M, Afshar Mogaddam MR (2016) Development of a dispersive liquid-liquid microextraction method based on solidification of a floating ionic liquid for extraction of carbamate pesticides from fruit juice and vegetable samples. RSC Adv 6(114):112939–112948. https://doi.org/10.1039/C6RA20103B

    Article  CAS  Google Scholar 

  178. Farajzadeh MA, Bamorowat M, Afshar Mogaddam MR (2017) Ionic liquid-based air-assisted liquid-liquid microextraction for the extraction and preconcentration of aryloxyphenoxypropionate herbicides from aqueous and vegetable samples followed by HPLC-DAD. Food Anal Methods 10(3):749–758. https://doi.org/10.1007/s12161-016-0637-9

    Article  Google Scholar 

  179. Chen X, Zhang X, Liu F, Hou F (2017) Binary–solvent–based ionic–liquid–assisted surfactant-enhanced emulsification microextraction for the determination of four fungicides in apple juice and apple vinegar. J Sep Sci 40(4):901–908. https://doi.org/10.1002/jssc.201601001

    Article  CAS  PubMed  Google Scholar 

  180. Zeng H, Yang X, Yang M, Wu X, Zhou W, Zhang S, Lu R, Li J, Gao H (2017) Ultrasound-assisted, hybrid ionic liquid, dispersive liquid–liquid microextraction for the determination of insecticides in fruit juices based on partition coefficients. J Sep Sci 40(17):3513–3521. https://doi.org/10.1002/jssc.201700464

    Article  CAS  PubMed  Google Scholar 

  181. Su R, Li D, Wu L, Han J, Lian W, Wang K, Yang H (2017) Determination of triazine herbicides in juice samples by microwave-assisted ionic liquid/ionic liquid dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography. J Sep Sci 40(14):2950–2958. https://doi.org/10.1002/jssc.201700270

    Article  CAS  PubMed  Google Scholar 

  182. Altunay N, Ülüzger D, Gürkan R (2018) Simple and fast spectrophotometric determination of low levels of thiabendazole residues in fruit and vegetables after pre-concentration with ionic liquid phase microextraction. Food Additives Contaminants Part A Chem Anal Control Exposure Risk Assess 35(6):1139–1154. https://doi.org/10.1080/19440049.2018.1444284

    Article  CAS  Google Scholar 

  183. Pham TPT, Cho C-W, Yun Y-S (2010) Environmental fate and toxicity of ionic liquids: a review. Water Res 44(2):352–372

    CAS  PubMed  Google Scholar 

  184. Bubalo MC, Radošević K, Redovniković IR, Halambek J, Srček VG (2014) A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicol Environ Saf 99:1–12

    PubMed  Google Scholar 

  185. Zhao Y, Zhao J, Huang Y, Zhou Q, Zhang X (2014) Toxicity of ionic liquids: database and prediction via quantitative structure—activity relationship method. J Hazard Mater 278:320–329

    CAS  PubMed  Google Scholar 

  186. Zhang C, Zhu L, Wang J, Zhou T, Xu Y, Cheng C (2017) The acute toxic effects of imidazolium-based ionic liquids with different alkyl-chain lengths and anions on zebrafish (Danio rerio). Ecotoxicol Environ Saf 140:235–240

    CAS  PubMed  Google Scholar 

  187. El-Harbawi M (2014) Toxicity measurement of imidazolium ionic liquids using acute toxicity test. Procedia Chem 9:40–52

    CAS  Google Scholar 

  188. Stock F, Hoffmann J, Ranke J, Stormann R, Ondruschka B, Jastorff B (2004) Effects of ionic liquids on the acetylcholinesterase—a structure-activity relationship consideration. Green Chem 6:286–290

    CAS  Google Scholar 

  189. Latała A, Nędzi M, Stepnowski P (2010) Toxicity of imidazolium ionic liquids towards algae. Influence of salinity variations. Green Chem 12(1):60–64

    Google Scholar 

  190. Zhang Z, Liu J-F, Cai X-Q, Jiang W-W, Luo W-R, Jiang G-B (2011) Sorption to dissolved humic acid and its impacts on the toxicity of imidazolium based ionic liquids. Environ Sci Technol 45:1688–1694

    CAS  PubMed  Google Scholar 

  191. Ranke J, Mölter K, Stock F, Bottin-Weber U, Poczobutt J, Hoffmann J, Ondruschka B, Filser J, Jastorff B (2004) Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicol Environ Saf 58:396–404

    CAS  PubMed  Google Scholar 

  192. Docherty KM, Kulpa JCF (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem 7:185–189

    CAS  Google Scholar 

  193. Hernandez-Fernandez FJ, Bayo J, de Los Perez, Rios A, Vicente MA, Bernal FJ, Quesada-Medina J (2015) Discovering less toxic ionic liquids by using the Microtox® toxicity test. Ecotoxicol Environ Saf 116C:29–33

    Google Scholar 

  194. Bubalo MC, Radošević K, Redovniković IR, Slivac I, Srček VG (2017) Toxicity mechanisms of ionic liquids. Arh Hig Rada Toksikol 68:171–179

    CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukman Bola Abdulra’uf.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulra’uf, L.B., Lawal, A., Sirhan, A.Y. et al. Review of Ionic Liquids in Microextraction Analysis of Pesticide Residues in Fruit and Vegetable Samples. Chromatographia 83, 11–33 (2020). https://doi.org/10.1007/s10337-019-03818-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03818-6

Keywords

Navigation