Skip to main content
Log in

A Transversely Isotropic Magneto-Electro-Elastic Circular Kirchhoff Plate Model Incorporating Microstructure Effect

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

A non-classical model for transversely isotropic magneto-electro-elastic circular Kirchhoff plates is established based on the extended modified couple stress theory. The Gibbs-type variational principle is used to obtain the governing equations and boundary conditions. To illustrate the newly derived model, the static bending problem of a clamped circular plate subjected to a uniformly distributed constant load is solved numerically by Fourier–Bessel series. The numerical results show that the values of transverse displacement, electric and magnetic potentials predicted by the current model are always smaller than those of the classical model, and the differences are diminishing as the plate thickness increases. In addition, it is shown that the magneto-electro-elastic coupling effect plays an important role in the transverse displacement, electric potential and magnetic potential of the magneto-electro-elastic circular Kirchhoff plates. Furthermore, several reduced specific models are provided for simpler cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ghayesh MH, Farokhi H, Alici G. Size-dependent performance of microgyroscopes. Int J Eng Sci. 2016;100:99–111.

    Article  MathSciNet  Google Scholar 

  2. Salas RA, Ramírez FJ, Montealegre-Rubio W, Silva ECN, Reddy JN. A topology optimization formulation for transient design of multi-entry laminated piezocomposite energy harvesting devices coupled with electrical circuit. Int J Numer Methods Eng. 2017;113:1370–410.

    Article  MathSciNet  Google Scholar 

  3. DeVoe DL. Piezoelectric thin film micromechanical beam resonators. Sens Actuators A Phys. 2001;88:263–72.

    Article  Google Scholar 

  4. Liang Y, Yang W, Yang J. Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Acta Mech Solida Sin. 2019;32:688–97.

    Article  Google Scholar 

  5. Hu Y, Hu T, Jiang Q. Coupled analysis for the harvesting structure and the modulating circuit in a piezoelectric bimorph energy harvester. Acta Mech Solida Sin. 2007;20:296–308.

    Article  Google Scholar 

  6. Yang W, Hu Y, Pan EN. Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Appl Math Mech Engl Ed. 2020;41:833–44.

    Article  MathSciNet  Google Scholar 

  7. Li YS, Pan E. Static bending and free vibration of a functionally graded piezoelectric microplate based on the modified couple-stress theory. Int J Eng Sci. 2015;97:40–59.

    Article  MathSciNet  Google Scholar 

  8. Lim CW, He LH. Size-dependent nonlinear response of thin elastic films with nano-scale thickness. Int J Mech Sci. 2004;46:1715–26.

    Article  Google Scholar 

  9. Yin L, Qian Q, Wang L, Xia W. Vibration analysis of microscale plates based on modified couple stress theory. Acta Mech Solida Sin. 2010;23:386–93.

    Article  Google Scholar 

  10. Lam DCC, Yang F, Chong ACM, Wang J, Tong P. Experiments and theory in strain gradient elasticity. J Mech Phys Solids. 2003;51:1477–508.

    Article  Google Scholar 

  11. Eringen AC. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys. 1983;54:4703–10.

    Article  Google Scholar 

  12. Eringen AC. Nonlocal continuum field theories. New York: Springer; 2002.

    MATH  Google Scholar 

  13. Li YS, Cai ZY, Shi SY. Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos Struct. 2014;111:522–9.

    Article  Google Scholar 

  14. Vinyas M, Nischith G, Loja MAR, Ebrahimi F, Duc ND. Numerical analysis of the vibration response of skew magneto-electro-elastic plates based on the higher-order shear deformation theory. Compos Struct. 2019;214:132–42.

    Article  Google Scholar 

  15. Reddy JN. Mechanics of laminated composite plates and shells: theory and analysis. Boca Raton: CRC Press LLC; 2004.

    MATH  Google Scholar 

  16. Zheng YF, Xu L-L, Chen C-P. Nonlinear bending analysis of magnetoelectroelastic rectangular plates using higher order shear deformation theory. J Mech Sci Technol. 2021;35:1099–108.

    Article  Google Scholar 

  17. Wang WJ, Li P, Jin F. Two-dimensional linear elasticity theory of magneto-electro-elastic plates considering surface and nonlocal effects for nanoscale device applications. Smart Mater Struct. 2016;25:095026.

    Article  Google Scholar 

  18. Ebrahimi F, Dabbagh A. On flexural wave propagation responses of smart FG magneto-electro-elastic nanoplates via nonlocal strain gradient theory. Compos Struct. 2017;162:281–93.

    Article  Google Scholar 

  19. Qu YL, Li P, Zhang GY, Jin F, Gao X-L. A microstructure-dependent anisotropic magneto-electro-elastic Mindlin plate model based on an extended modified couple stress theory. Acta Mech. 2020;231:4323–50.

    Article  MathSciNet  Google Scholar 

  20. Toupin RA. Elastic materials with couple-stresses. Arch Ration Mech Anal. 1962;11:385–414.

    Article  MathSciNet  Google Scholar 

  21. Mindlin RD. Influence of couple-stresses on stress concentrations. Exp Mech. 1963;3:1–7.

    Article  Google Scholar 

  22. Tang PY. Interpretation of bend strength increase of graphite by the couple stress theory. Comput Struct. 1983;16:45–9.

    Article  Google Scholar 

  23. Yang F, Chong ACM, Lam DCC, Tong P. Couple stress based strain gradient theory for elasticity. Int J Solids Struct. 2002;39:2731–43.

    Article  Google Scholar 

  24. Park SK, Gao X-L. Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z Angew Math Phys. 2008;59:904–17.

    Article  MathSciNet  Google Scholar 

  25. Zhang GY, Gao X-L, Guo ZY. A non-classical model for an orthotropic Kirchhoff plate embedded in a viscoelastic medium. Acta Mech. 2017;228:3811–25.

    Article  MathSciNet  Google Scholar 

  26. Zhang GY, Qu YL, Gao X-L, Jin F. A transversely isotropic magneto-electro-elastic Timoshenko beam model incorporating microstructure and foundation effects. Mech Mater. 2020;149:103412.

    Article  Google Scholar 

  27. Zhou S-S, Gao X-L. A nonclassical model for circular Mindlin plates based on a modified couple stress theory. J Appl Mech. 2014;81:051014.

    Article  Google Scholar 

  28. Zhang GY, Gao X-L, Wang JZ. A non-classical model for circular Kirchhoff plates incorporating microstructure and surface energy effect. Acta Mech. 2015;226:4073–85.

    Article  MathSciNet  Google Scholar 

  29. Ma HM, Gao XL, Reddy JN. A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 2011;220:217–35.

    Article  Google Scholar 

  30. Wang Q. On buckling of column structures with a pair of piezoelectric layers. Eng Struct. 2002;24:199–205.

    Article  Google Scholar 

  31. Qu YL, Zhang GY, Fan YM, Jin F. A non-classical theory of elastic dielectrics incorporating couple stress and quadrupole effects: part I—reconsideration of curvature-based flexoelectricity theory. Math Mech Solids. 2021. https://doi.org/10.1177/10812865211001533.

    Article  MathSciNet  Google Scholar 

  32. Ariman T. On circular micropolar plates. Ing Arch. 1968;37:156–60.

    Article  Google Scholar 

  33. Wang R, Han Q, Pan E. An analytical solution for a multilayered magneto-electro-elastic circular plate under simply supported lateral boundary conditions. Smart Mater Struct. 2010;19:065025.

    Article  Google Scholar 

  34. Zhang GY, Gao X-L, Tang S. A non-classical model for circular Mindlin plates incorporating microstructure and surface energy effects. Procedia IUTAM. 2017;21:48–55.

    Article  Google Scholar 

  35. Kreyszig E. Advanced engineering mathematics. New York: Wiley; 2011.

    MATH  Google Scholar 

  36. Yuan X, Tian T, Zhou H, Zhou J. Comparisons of methods for solving static deflections of a thin annular plate. Appl Numer Math. 2018;127:266–79.

    Article  MathSciNet  Google Scholar 

  37. Wang Y, Xu RQ, Ding HJ. Axisymmetric bending of functionally graded circular magneto-electro-elastic plates. Eur J Mech A Solids. 2011;30:999–1011.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work reported here is funded by the National Natural Science Foundation of China [Grant Numbers 12002086 and 11672099]. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gongye Zhang or Shuitao Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, W., Zhang, G., Gu, S. et al. A Transversely Isotropic Magneto-Electro-Elastic Circular Kirchhoff Plate Model Incorporating Microstructure Effect. Acta Mech. Solida Sin. 35, 185–197 (2022). https://doi.org/10.1007/s10338-021-00271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00271-7

Keywords

Navigation