Skip to main content
Log in

Frequency Veering of Rotating Metal Porous Twisted Plate with Cantilever Boundary Using Shell Theory

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

The frequency veering of a metal porous rotating cantilever twisted plate with twist angle and stagger angle is investigated. Metal porous materials may have the characteristics of gradient or uniform distribution along the thickness direction. Based on the classical shell theory, considering the influence of centrifugal force produced by high-speed rotation, the free vibration equations of a rotating cantilever twisted plate are derived. Through the polynomial function and Rayleigh–Ritz method, the natural frequencies and mode shapes of the metal porous cantilever twisted plate in both static and rotating states are derived. The accuracy of the present theory and calculation results is confirmed by a comparison between them and the results available from the literature and those obtained from Abaqus. The influences of the thickness ratio, porosity, twist angle, stagger angle and rotational velocity on the frequency veering and mode shape shift of the rotating cantilever twisted plate with porous material under three different distributions are analyzed. It should be mentioned that the frequency veering accompanied by mode shape shift occurs in both static and dynamic states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hong HY, Park JH, Park J. Vibration analysis of rotating pre-twisted blades. Comput Struct. 2001;79(19):1811–9.

    Article  Google Scholar 

  2. Yao MH, Chen YP, Zhang W. Nonlinear vibrations of blade with varying rotating speed. Nonlinear Dyn. 2012;68(4):487–504.

    Article  MathSciNet  Google Scholar 

  3. Yao MH, Zhang W, Chen YP. Analysis on nonlinear oscillations and resonant responses of a compressor blade. Acta Mech. 2014;225(12):3483–510.

    Article  MathSciNet  Google Scholar 

  4. Oh SY, Song O, Librescu L. Effects of pretwist and presetting on coupled bending vibrations of rotating thin-walled composite beams. Int J Solids Struct. 2003;40(5):1203–24.

    Article  Google Scholar 

  5. Chandiramani NK, Shete CD, Librescu LI. Vibration of higher-order-shearable pretwisted rotating composite blades. Int J Mech Sci. 2003;45(12):2017–41.

    Article  Google Scholar 

  6. Ma H, Xie F, Nai H, et al. Vibration characteristics analysis of rotating shrouded blades with impacts. J Sound Vib. 2016;378:92–108.

    Article  Google Scholar 

  7. Rao JS, Gupta K. Free vibrations of rotating small aspect ratio pretwisted blades. Mech Mach Theory. 1987;22(2):159–67.

    Article  Google Scholar 

  8. Qatu MS, Leissa AW. Vibration studies for laminated composite twisted cantilever plates. Int J Mech Sci. 1991;33(11):927–40.

    Article  Google Scholar 

  9. Hu XX, Sakiyama T, Xiong Y, Matsuda H, Morita C. Vibration analysis of twisted plates using first order shear deformation theory. J Sound Vib. 2004;277(1):205–22.

    Article  Google Scholar 

  10. Cao DX, Liu BY, Yao MH, Zhang W. Free vibration analysis of a pre-twisted sandwich blade with thermal barrier coatings layers. Sci China Technol Sci. 2017;60(11):1747–61.

    Article  Google Scholar 

  11. Sun J, Kari L, Arteaga IL. A dynamic rotating blade model at an arbitrary stagger angle based on classical plate theory and the Hamilton’s principle. J Sound Vib. 2013;332(5):1355–71.

  12. Gu XJ, Hao YX, Zhang W, Chen J. Dynamic stability of rotating cantilever composite thin walled twisted plate. Thin Wall Struct. 2019;144:106267.

    Article  Google Scholar 

  13. Sun J, Arteaga IL, Kari L. General shell model for a rotating pretwisted blade. J Sound Vib. 2013;332(22):5804–20.

    Article  Google Scholar 

  14. Liew KM, Lim CW, Ong LS. Vibration of pretwisted cantilever shallow conical shells. Int J Solids Struct. 1994;34(21):2463–76.

    Article  Google Scholar 

  15. Hu XX, Tsuiji T. Free vibration analysis of rotating twisted cylindrical thin panels. J Sound Vib. 1999;222(2):209–24.

    Article  Google Scholar 

  16. Hu XX, Sakiyama T, Matsuda H, Morita C. Vibration of twisted laminated composite conical shells. Int J Mech Sci. 2002;44(8):1521–41.

    Article  Google Scholar 

  17. Hu XX, Sakiyama T, Matsuda H, Morita C. Vibration analysis of rotating twisted and open conical shells. Int J Solids Struct. 2002;39(25):6121–34.

    Article  Google Scholar 

  18. Hu XX, Sakiyama T, Matsuda H, Morita C. Fundamental vibration of rotating cantilever blades with pre-twist. J Sound Vib. 2004;271(1):47–66.

    Article  Google Scholar 

  19. Yao MH, Niu Y, Hao YX. Nonlinear dynamic responses of rotating pretwisted cylindrical shells. Nonlinear Dyn. 2019;95(1):151–74.

    Article  Google Scholar 

  20. Niu Y, Zhang W, Guo XY. Free vibration of rotating pretwisted functionally graded composite cylindrical panel reinforced with graphene platelets. Eur J Mech A-Solid. 2019;77:103798.

    Article  MathSciNet  Google Scholar 

  21. Chen D, Yang J, Kitipornchai S. Free and forced vibrations of shear deformable functionally graded porous beams. Int J Mech Sci. 2016;108:14–22.

    Article  Google Scholar 

  22. Grygorowicz M, Magnucki K, Malinowski M. Elastic buckling of a sandwich beam with variable mechanical properties of the core. Thin Wall Struct. 2015;87:127–32.

    Article  Google Scholar 

  23. Li QY, Wu D, Chen XJ, et al. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. Int J Mech Sci. 2018;148:596–610.

    Article  Google Scholar 

  24. Nguyen NV, Lee J, Nguyen HX. Active vibration control of GPLs-reinforced FG metal foam plates with piezoelectric sensor and actuator layers. Composites. 2019;172:769–84.

    Article  Google Scholar 

  25. Keleshteri MM, Jelovica J. Nonlinear vibration behavior of functionally graded porous cylindrical panels. Compos Struct. 2020;239:112028.

    Article  Google Scholar 

  26. Wang Y, Wu D. Free vibration of functionally graded porous cylindrical shell using a sinusoidal shear deformation theory. Aerosp Sci Technol. 2017;66:83–91.

    Article  Google Scholar 

  27. Gao K, Gao W, Wu B, et al. Nonlinear primary resonance of functionally graded porous cylindrical shells using the method of multiple scales. Thin Wall Struct. 2018;125:281–93.

    Article  Google Scholar 

  28. Zhao J, Xie F, Wang A, et al. A unified solution for the vibration analysis of functionally graded porous (FGP) shallow shells with general boundary conditions. Compos B Eng. 2019;156:406–24.

    Article  Google Scholar 

  29. Zhao J, Xie F, Wang A, et al. Vibration behavior of the functionally graded porous (FGP) doubly-curved panels and shells of revolution by using a semi-analytical method. Composites. 2019;157:219–38.

    Article  Google Scholar 

  30. Marugabandhu P, Griffin JH. A reduced-order model for evaluating the effect of rotational speed on the natural frequencies and mode shapes of blades. J Eng Gas Turb Power. 2000;125(3):776.

    Google Scholar 

  31. Sari M, Shaat M, Abdelkefi A. Frequency and mode veering phenomena of axially functionally graded non-uniform beams with nonlocal residuals. Compos Struct. 2017;163:280–92.

    Article  Google Scholar 

  32. Kenyon JA, et al. Frequency veering effects on mistuned bladed disk forced response. J Propul Power. 2004;20(5):863.

    Article  Google Scholar 

  33. Al-Qaisia AA, Hamdan MN. On nonlinear frequency veering and mode localization of a beam with geometric imperfection resting on elastic foundation. J Sound Vib. 2013;332(19):4641–55.

    Article  Google Scholar 

  34. Lopez I, Doorn R, Steen R, et al. Frequency loci veering due to deformation in rotating tyres. J Sound Vib. 2009;324(3–5):622–39.

    Article  Google Scholar 

  35. Gupta K, Rao JS. Torsional vibrations of pre-twisted cantilever plates. J Mech Design. 1978;100(3):528.

    Article  Google Scholar 

  36. Hu XX, Lim CW, Sakiyama T, et al. Free vibration of elastic helicoidal shells. Int J Mech Sci. 2005;47(6):941–60.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of National Natural Science Foundation of China (grant nos. 11872127, 11832002, and 11732005), the Qin Xin Talents Cultivation Program, Beijing Information Science & Technology University (QXTCP A201901), and the Project of High-level Innovative Team Building Plan for Beijing Municipal Colleges and Universities (No. IDHT20180513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. X. Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y.Y., Hao, Y.X., Zhang, W. et al. Frequency Veering of Rotating Metal Porous Twisted Plate with Cantilever Boundary Using Shell Theory. Acta Mech. Solida Sin. 35, 282–302 (2022). https://doi.org/10.1007/s10338-021-00275-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-021-00275-3

Keywords

Navigation