Skip to main content

Advertisement

Log in

AMF and Bacillus megaterium Neutralize the Harmful Effects of Salt Stress On Bean Plants

AMF und Bacillus megaterium neutralisieren die schädlichen Auswirkungen von Salzstress auf Bohnenpflanzen

  • Original Article
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Two pot experiments were directed under open field conditions where green bean (Phaseolus vulgaris L.) plants cv. Valentino were irrigated with four levels of salinity (1000, 2000, 3000 and 4000 ppm) combined with two anti-salinity agents (Arbuscular Mycorrhizal fungi [AMF] Glomus irradicans 10% w/w, Bacillus megaterium [10 ml/pot] and non-inoculated plants as control) to counteract the negative effect of salt stress, improve the growth, yield, enzymes activity and chemical composition of green bean plants during 2017and 2018 growing seasons. All salinity amelioration treatments (AMF and Bacillus megaterium) significantly improved vegetative growth, shoots biomass (total fresh and dry weight per plant), chlorophyll and antioxidant enzymatic activity at all verified salinity levels compared with non-inoculated plants (control) which showed severe growth retardation especially under the higher salt concentration (4000 ppm). The lowest values of membrane permeability and maximum leaf relative water content were significantly obtained with AMF and B. megaterium. Plants irrigated with lower concentrated saline water (1000 ppm) significantly accumulated lower Na and Cl and higher K than plants irrigated with higher concentrated salinity irrigation water (4000 ppm). The anti-salinity application increased green bean pod yield under all salinity stress levels particularly with AMF followed by B. megaterium compared with non-inoculated plants.

Zusammenfassung

In zwei Topfexperimenten unter Freilandbedingungen wurden grüne Bohnen (Phaseolus vulgaris L.) cv. Valentino mit salzhaltigem Wasser bewässert (vier Salinitätsstufen: 1000, 2000, 3000 und 4000 ppm), kombiniert mit zwei unterschiedlichen Behandlungsmethoden (arbuskuläre Mykorrhizapilze [AMF] Glomus besticansans 10 % w/w, Bacillus megaterium [10 ml/Topf], nicht beimpfte Pflanzen als Kontrolle). Ziel war es, der negativen Auswirkung von Salzstress entgegenzuwirken sowie das Wachstum, den Ertrag, die Enzymaktivität und die chemische Zusammensetzung von grünen Bohnenpflanzen in den Vegetationsperioden 2017 und 2018 zu verbessern. Beide Behandlungen verbesserten signifikant bei allen Salzgehalten das vegetative Wachstum, die Biomasse der Triebe (Gesamt-Frisch- und -Trockengewicht pro Pflanze), die enzymatische Chlorophyll- und antioxidative Aktivität im Vergleich zu nicht beimpften Pflanzen. Die Kontrollpflanzen zeigten eine starke Wachstumsverzögerung, insbesondere bei der höheren Salzkonzentration (4000 ppm). Die geringste Membranpermeabilität und der maximale relative Wassergehalt der Blätter wurden durch die Behandlung mit AMF und B. megaterium erreicht. Pflanzen, die mit niedriger konzentriertem Salzwasser (1000 ppm) bewässert wurden, akkumulierten signifikant weniger Na und Cl und mehr K als Pflanzen, die mit höher konzentriertem Salzwasser (4000 ppm) bewässert wurden. Die Behandlungen erhöhten die Ausbeute der grünen Bohnenschoten, insbesondere durch AMF, gefolgt von B. megaterium, verglichen mit nicht beimpften Pflanzen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel-Mawgoud AMR (2006) Growth, yield and quality of green bean (Phaseolus vulgaris) in response to irrigation and compost applications. J Appl Sci Res 2(7):443–450

    Google Scholar 

  • Al-Karaki GN (2000) Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza, vol 10, pp 51–54

    Google Scholar 

  • Al-Karaki GN, Hammad R, Rusan M (2001) Response of two tomato cultivars differing in salt tolerance toinoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47. https://doi.org/10.1007/s005720100098

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington DC

    Google Scholar 

  • Arumugam R, Rajasekaran S, Nagarajan SM (2010) Response of Arbuscularmycorrhizal fungi and Rhizobium inoculation on growth and chlorophyll content of Vignaunguiculata (L) Walp Var. Pusa 151. J Appl Sci Environ Manage. https://doi.org/10.4314/jasem.v14i4.63282

    Article  Google Scholar 

  • Ashraf M (1994) Organic substances responsible for salt tolerance in Eruca sativa. Biol Plant 36:255–259

    CAS  Google Scholar 

  • Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    CAS  Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscularmycorrhizal symbiosis. Mycorrhiza 11:3–42. https://doi.org/10.1007/s005720100097

    Article  Google Scholar 

  • Barker SJ, Tagu D (2000) The roles of auxins and cytokinins in mycorrhizal symbioses. J Plant Growth Regul 19:144–154

    CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    CAS  PubMed  Google Scholar 

  • Borde M, Dudhane M, Jite PK (2010) AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Not Sci Biol 2(4):64–71

    CAS  Google Scholar 

  • Colla G, Rouphael Y, Cardarelli M, Tullio M, Rivera CM, Rea E (2008) Alleviation of salt stress by arbuscularmycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biol Fertil Soils 44:501–509

    CAS  Google Scholar 

  • Egamberdieva D, Lugtenberg B (2014) Use of plant growth-promoting rhizobacteria to alleviate salinity stress in plants. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 73–96

    Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscularmycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimumbasilicum L.). Saudi J Biol Sci 24(1):170–179. https://doi.org/10.1016/j.sjbs.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  • Estaún V, Calvet C, Hayman DS (1987) Influence of plant genotype on mycorrhizal infection: response of three pea cultivars. Plant Soil 103(2):296–298. https://doi.org/10.1007/bf02370406

    Article  Google Scholar 

  • Farooq M, Gogoi N, Hussain M, Barthakur S, Paul S, Bharadwaj N et al (2017) Effects, tolerance mechanisms and management of salt stress in grain legumes. Plant Physiol Biochem 118:199–217. https://doi.org/10.1016/j.plaphy.2017.06.020

    Article  CAS  PubMed  Google Scholar 

  • Ferri A, Lluch C, Ocaña A (2000) Effect of salt stress on carbon metabolism and bacteriod respiration in root nodules of common bean (PhaseolusvulgariesL.). Plant Biol 2:396–402. https://doi.org/10.1055/s-2000-5956

    Article  CAS  Google Scholar 

  • Galmés J, Ribas-Carbó M, Medrano H, Flexas J (2011) Rubisco activity in Mediterranean species is regulated by the chloroplastic CO2 concentration under water stress. J Exp Bot 62:653–665. https://doi.org/10.1093/jxb/erq303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García‐Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53(373):1377–1386. https://doi.org/10.1093/jexbot/53.373.1377

    Article  PubMed  Google Scholar 

  • Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth nutrient status, K +/Na+ ratio and yield of Cicer arietinum L. Genotypes under salinity stress. Plant Growth Regul 78:371–387. https://doi.org/10.1007/s10725-015-0099-x

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2008) Effect of arbuscularmycorrhizal inoculation of saltinduced nodule senescence in CajanuscajanL. (pigeonpea). J Plant Growth Regul 27:115–124. https://doi.org/10.1007/s00344-007-9038-z

    Article  CAS  Google Scholar 

  • Ghoname AA, El-Bassiouny AM, Abdel-Mawgoud AMR, El-Tohamy WA, Gruda N (2012) Growth, yield and blossom-end rot incidence in Bell pepper as affected by phosphorus level and amino acid applications. Gesunde Pflanzen 64:29–37

    CAS  Google Scholar 

  • Giri B, Mukerji KG (2004) Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbaniagrandiflora under field condition: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza 14:307–312

    PubMed  Google Scholar 

  • Grichko VP, Glick BR (2001) Amelioration offlooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17

    CAS  Google Scholar 

  • Gunes A, Karagoz K, Turan M, Kotan R, Yildirim E, Cakmakci R, Sahın F (2015) Fertilizer efficiency of some plant growth promoting rhizobacteria for plant growth. Res J Soil Biol 7(2):28–45. https://doi.org/10.3923/rjsb.2015.28.45

    Article  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecularcharacterization. Int J Genom. https://doi.org/10.1155/2014/701596

    Article  Google Scholar 

  • Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International. https://doi.org/10.1155/2016/6284547

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamdia MA, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effect of Azospirillum brasilense inoculation on maize cultivars grown under salt stress. Plant Growth Regul 44:165–174

    CAS  Google Scholar 

  • Hammerschmidt R, Nuckles EM, Kuc J (1982) Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichumlagenarium. Physiol Plant Pathol 20:73–82

    CAS  Google Scholar 

  • Han HS, Lee KD (2005) Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Res J Agric Biol Sci 1(3):210–215

    Google Scholar 

  • Hegazi AM, El-Shraiy AM, Ghoname AA (2015) Alleviation of salt stress adverse effect and enhancing phenolic anti-oxidant content of eggplant by seaweed extract. Gesunde Pflanzen 67(1):21–31

    CAS  Google Scholar 

  • Hegazi AM, El-Shraiy AM, Ghoname AA (2017) Mitigation of salt stress negative effects on sweet pepper using ArbuscularMycorrhizal fungi (AMF), bacillus megaterium and Brassinosteroids (BRs). Gesunde Pflanzen 69(2):91–102

    CAS  Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agricul Sci 11(1):57–61. https://doi.org/10.1016/j.jssas.2011.09.001

    Article  Google Scholar 

  • Hossain MA, Bhattacharjee S, Armin SM, Qian P, Xin W, Li HY, Burritt DJ, Fujita M et al (2015) Hydrogen peroxide priming modulates abiotic oxidative stress tolerance: insights from ROS detoxification and scavenging. Front Plant Sci 6:420. https://doi.org/10.3389/fpls.2015.00420

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismaiel AA, Hegazy HS, Azb MA (2014) Physiological response of Viciafaba L. to inoculation with Rhizobium and arbuscularmycorrhizal fungi: comparative study for irrigation with Nile water and wastewater. Aust J Crop Sci 8(5):781–790

    CAS  Google Scholar 

  • Jackson ML (1973) Soil chemical analysis. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Juniper S, Abbott L (1993) Vesicular-Arbuscularmycorrhizas and soil salinity. Mycorrhiza 4:45–58

    Google Scholar 

  • Karlidag H, Yildirim E, Turan M, Pehluvan M, Donmez F (2013) Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). HortScience 48(5):563–567

    CAS  Google Scholar 

  • Kaya C, Higgs D, Ince F, Amador BM, Cakir A, Sakar E (2003) Ameliorative effects of potassium phosphate on salt-stressed pepper and cucumber. J Plant Nutr 26:807–820

    CAS  Google Scholar 

  • Kaya C, Ashraf M, Sonmez O, Aydemir S, Tuna AL, Cullu MA (2009) The influence of arbuscular mycorrhizal colonisation on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6. https://doi.org/10.1016/j.scienta.2009.01.001

    Article  CAS  Google Scholar 

  • Khan HA, Siddique KHM, Colmer TD (2016) Vegetative and reproductive growth of salt-stressed chickpea are carbon-limited: sucrose infusion at the reproductive stage improves salt tolerance. J Exp Bot. https://doi.org/10.1093/jxb/erw177

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan W, Prithiviraj B, Smith DL (2003) Photosynthetic responses of corn and soybean to foliar application of salicylates. J Plant Physiol 160(5):485–492

    CAS  PubMed  Google Scholar 

  • Koyro HW, Ahmad P, Geissler N (2012) Abiotic stress responses in plants: an overview. In: Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, pp 1–28

    Google Scholar 

  • Marschner H. (1986) Mineral nutrition in higher plants. Wd Ltd. The Greystone Press, Antrim, Northern Ireland

    Google Scholar 

  • Marulanda A, Barea JM, Azcón R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial eVectiveness. J Plant Growth Regul 28:115–124

    CAS  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria that confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomato and pepper. Plant Sci 166:525–530

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr. (eds) Arbuscularmycorrhizas physiology and function. Kluwer, Dordrecht, pp 3–18

    Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stress. Plant Cell Environ 33:453–467

    CAS  PubMed  Google Scholar 

  • Montavon P, Kukic KR, Bortlik K (2007) A simple method to measure effective catalase activities: optimization, validation, and application in green coffee. Anal Biochem 360:207–215

    CAS  PubMed  Google Scholar 

  • Neeraj K, Singh K (2005) Impact of VA-mycorrhiza, Rhizobium and phosphorus on growth and yield of Phaseolus vulgaris L. J Phytol Res 18(1):59–63

    Google Scholar 

  • Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobiumleguminosarumas a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42:279–283

    CAS  PubMed  Google Scholar 

  • Pan Y, Wu LJ, Yu ZL (2006) Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul 49(2–3):157–165

    CAS  Google Scholar 

  • Salim BBM, Abou El-Yazied A (2015) Effect of mycorrhiza on growth, biochemical constituents and yield of snap bean plants under water deficit conditions. J Hortic Sci Ornam Plants 7(3):131–140

    CAS  Google Scholar 

  • Scheibe R, Beck E (2011) Drought, desiccation, and oxidative stress. In: Lüttge U, Bech E, Bartels D (eds) Plant desiccation tolerance, vol 215. Springer, Berlin, pp 209–231

    Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with pre-treated mycorrhizal fungi. J Plant Physiol 164:1144–1151. https://doi.org/10.1016/j.jplph.2006.06.016

    Article  CAS  PubMed  Google Scholar 

  • Shekoofeh E, Sepideh H (2011) Effect of mycorrhizal fungi on some physiological characteristics of salt stressed Ocimumbasilicum L. Iraninan. J Plant Physiol 1(4):215–222

    Google Scholar 

  • Shi Q, Bao Z, Zhu Z, Ying Q, Qian Q (2006) Effects of different treatments of salicylic acid on heat tolerance, chlorophyll fluorescence, and antioxidant enzyme activity in seedlings of Cucumis sativa L. Plant Growth Regul 48:127–135

    CAS  Google Scholar 

  • Shinde BP, Thakur J (2015) Influence of arbuscularmycorrhizal fungi on chlorophyll, proteins, proline and total carbohydrates content of the pea plant under water stress condition. Int J Curr Microbiol App Sci 4(1):809–821

    CAS  Google Scholar 

  • Snedecor GW, Cochran WG (1967) Statistical methods, 6th edn. Iowa state University, Ames

    Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscularmycorrhizal fungal isolates from saline or non-saline on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Google Scholar 

  • Wang Y, Li K, Li X (2009) Auxin redistribution modulates plastic development of root system architecture under salt stress in Arabidopsis thaliana. J Plant Physiol 166:1637–1645

    CAS  PubMed  Google Scholar 

  • Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125:1347–1360

    CAS  PubMed  Google Scholar 

  • Yaseen T, Ali KAWSAR, Munsif F, Rab A, Ahmad M, Israr M, Baraich K (2016) Influence of arbuscularmycorrhizal fungi, Rhizobium inoculation and rock phosphate on growth and quality of lentil. Pak J Bot 48(5):2101–2107

    CAS  Google Scholar 

  • Yildirim E, Turan M, Donmez MF (2008) Mitigation of salt stress in radish (Raphanus sativus L.) by plant growth promoting rhizobacteria. Roumanian Biotechnol Lett 13:3933–3943

    Google Scholar 

  • Youssef SM, Riad GS, Elhady SAA (2017) Effect of phosphorus sources and Arbuscular Mycorrhizal inoculation on growth and productivity of snap bean (Phaseolus vulgaris L.). Gesunde Pflanzen 69(3):139–148

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A Ghoname.

Ethics declarations

Conflict of interest

N.A. Abdel Motaleb, S.A. Abd Elhady and A.A. Ghoname declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Motaleb, N.A., Abd Elhady, S.A. & Ghoname, A.A. AMF and Bacillus megaterium Neutralize the Harmful Effects of Salt Stress On Bean Plants. Gesunde Pflanzen 72, 29–39 (2020). https://doi.org/10.1007/s10343-019-00480-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-019-00480-8

Keywords

Schlüsselwörter

Navigation