Skip to main content

Advertisement

Log in

The prominent role of bacterial sulfate reduction in the formation of glendonite: a case study from Paleogene marine strata of western Washington State

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Ikaite (CaCO3·6H2O) forms at near-freezing temperatures and its precipitation is favored by high alkalinity and high concentrations of dissolved phosphate. With increasing temperatures during early burial, ikaite transforms into its calcite pseudomorph referred to as glendonite. To further constrain the biogeochemical processes that impact the transformation of ikaite to glendonite, glendonites from Cenozoic strata of western Washington State, USA, were analyzed for their petrographic characteristics, stable isotope (C, O, S) patterns, and lipid biomarker inventories. Glendonites from the Humptulips, Pysht, Lincoln Creek, and Astoria Formations occur in strata that enclose abundant methane-seep deposits. Despite robust evidence for the anaerobic oxidation of methane (AOM) at these ancient seep sites, molecular signatures of this biogeochemical process were not found within glendonite. Glendonite was found to contain abundant, moderately 13C-depleted iso- and anteiso-fatty acids, compounds interpreted as biomarkers of sulfate-reducing bacteria in marine settings. The 34S-enrichment in carbonate-associated sulfate (δ34SCAS = 54.1 ‰) and the 34S-depletion of pyrite (δ34SCRS = 6.8–12.5 ‰) in glendonite samples confirm that bacterial sulfate reduction was a prominent process in the sedimentary environment during the transformation of ikaite to glendonite. Low δ13Cglendonite values, such as those of the Washington State glendonites (as low as −21‰), have previously been interpreted as signatures of methane-derived carbon; however, the admittedly small data set obtained from the Washington State glendonites is best explained with organoclastic sulfate reduction as the alkalinity engine driving carbonate precipitation. This surprising finding reveals that more comprehensive work is needed to decipher the biogeochemical processes that governed the transformation of ikaite to glendonite in ancient marine settings, including the relative contribution of organoclastic sulfate reduction and AOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albers C, Kattner G, Hagen W (1996) The compositions of wax esters, triacylglycerols and phospholipids in Arctic and Antarctic copepods: evidence of energetic adaptations. Mar Chem 55:347–358

    Article  Google Scholar 

  • Amano K, Kiel S (2007) Fossil vesicomyid bivalves from the North Pacific region. Veliger 49:270–293

    Google Scholar 

  • Barnes G, Goedert JL (2001) Stratigraphy and paleoecology of Oligocene and Miocene desmostylian occurrences in western Washington State, USA. Bull Ashoro Mus Paleontol 2:7–22

    Google Scholar 

  • Beikman HM, Rau WW, Wagner HC (1967) The Lincoln Creek Formation, Grays Harbor Basin, southwestern Washington. US Geol Surv Bull 1244-I:11–14

    Google Scholar 

  • Belt ST, Allard WG, Massé G, Robert J-M, Rowland SJ (2000) Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochim Cosmochim Acta 64:3839–3851

    Article  Google Scholar 

  • Birgel D, Peckmann J, Klautzsch S, Thiel V, Reitner J (2006) Anaerobic and aerobic oxidation of methane at late Cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiol J 23:565–577

    Article  Google Scholar 

  • Birgel D, Himmler T, Freiwald A, Peckmann J (2008) A new constraint on the antiquity of anaerobic oxidation of methane: late Pennsylvanian seep limestones from southern Namibia. Geology 36:543–546

    Article  Google Scholar 

  • Birgel D, Meister P, Lundberg R, Horath T, Bontognali T, Bahniuk A, Rezende C, Vasconcelos C, McKenzie J (2015) Methanogenesis produces strong 13C enrichment in stromatolites of Lagoa Salgada, Brazil: a modern analogue for Palaeo-/Neoproterozoic stromatolites? Geobiology 13:245–266

    Article  Google Scholar 

  • Bischoff JL, Fitzpatrick JA, Rosenbauer RJ (1993) The solubility and stabilization of ikaite (CaCO3·6H2O) from 0° to 25° C: environmental and paleoclimatic implications for thinolite tufa. J Geol 101:21–33

    Article  Google Scholar 

  • Blumenberg M, Krüger M, Nauhaus K, Talbot HM, Oppermann BI, Seifert R, Pape T, Michaelis W (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227

    Article  Google Scholar 

  • Bolliger C, Schroth MH, Bernasconi SM, Kleikemper J, Zeyer J (2001) Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria. Geochim Cosmochim Acta 65:3289–3298

    Article  Google Scholar 

  • Brüchert V (2004) Physiological and ecological aspects of sulfur isotope fractionation during bacterial sulfate reduction. Geol Soc Am Spec Pap 379:1–16

    Google Scholar 

  • Brunner B, Bernasconi SM (2005) A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate-reducing bacteria. Geochim Cosmochim Acta 69:4759–4771

    Article  Google Scholar 

  • Burdett JW, Arthur MA, Richardson M (1989) A Neogene seawater sulfur isotope age curve from calcareous pelagic microfossils. Earth Planet Sci Lett 94:189–198

    Article  Google Scholar 

  • Burton EA, Walter LM (1990) The role of pH in phosphate inhibition of calcite and aragonite precipitation rates in seawater. Geochim Cosmochim Acta 54:797–808

    Article  Google Scholar 

  • Campbell KA (1992) Recognition of a Mio-Pliocene cold seep setting from the northeast Pacific convergent margin, Washington, USA. Palaios 7:422–433

    Article  Google Scholar 

  • Canfield DE (2001) Biogeochemistry of sulfur isotopes. Rev Mineral Geochem 43:607–636

    Article  Google Scholar 

  • Canfield DE, Raiswell R, Westrich JT, Reaves CM, Berner RA (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol 54:149–155

    Article  Google Scholar 

  • Cangemi M, Censi P, Reimer A, D’Alessandro W, Hause-Reitner D, Madonia P, Oliveri Y, Pecoraino G, Reitner J (2016) Carbonate precipitation in the alkaline lake Specchio di Venere (Pantelleria Island, Italy) and the possible role of microbial mats. Appl Geochem 67:168–176

    Article  Google Scholar 

  • Coleman ML (1985) Geochemistry of diagenetic non-silicate minerals: kinetic considerations. Philos Trans R Soc Lond A 315:39–56

    Article  Google Scholar 

  • Coleman ML (1993) Microbial processes: controls on the shape and composition of carbonate concretions. Mar Geol 113:127–140

    Article  Google Scholar 

  • Council TC, Bennett PC (1993) Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds. Geology 21:971–974

    Article  Google Scholar 

  • De Lurio JL, Frakes LA (1999) Glendonites as a paleoenvironmental tool: implications for early Cretaceous high latitude climates in Australia. Geochim Cosmochim Acta 63:1039–1048

    Article  Google Scholar 

  • Didyk B, Simoneit B, Brassell ST, Eglinton G (1978) Organic geochemical indicators of palaeoenvironmental conditions of sedimentation. Nature 272:216–222

    Article  Google Scholar 

  • Dieckmann GS, Nehrke G, Papadimitriou S, Göttlicher J, Steininger R, Kennedy H, Wolf-Gladrow D, Thomas DN (2008) Calcium carbonate as ikaite crystals in Antarctic sea ice. Geophys Res Lett 35:L08501. doi:10.1029/2008GL033540

    Article  Google Scholar 

  • Dowling NJ, Widdel F, White DC (1986) Phospholipid ester-linked fatty acid biomarkers of acetate-oxidizing sulphate-reducers and other sulphide-forming bacteria. J Gen Microbiol 132:1815–1825

    Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    Article  Google Scholar 

  • Eickhoff M, Birgel D, Talbot HM, Peckmann J, Kappler A (2013) Bacteriohopanoid inventory of Geobacter sulfurreducens and Geobacter metallireducens. Org Geochem 58:107–114

    Article  Google Scholar 

  • Elvert M, Boetius A, Knittel K, Jørgensen BB (2003) Characterization of specific membrane fatty acids as chemotaxonomic markers for sulfate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiol J 20:403–419

    Article  Google Scholar 

  • Farquhar J, Johnston DT, Wing BA, Habicht KS, Canfield DE, Airieau S, Thiemens MH (2003) Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record. Geobiology 1:27–36

    Article  Google Scholar 

  • Frank TD, Thomas SG, Fielding CR (2008) On using carbon and oxygen isotope data from glendonites as paleoenvironmental proxies: a case study from the Permian system of eastern Australia. J Sediment Res 78:713–723

    Article  Google Scholar 

  • Gillan FT, Sandstrom MW (1985) Microbial lipids from a nearshore sediment from Bowling Green Bay, North Queensland: the fatty acid composition of intact lipid fractions. Org Geochem 8:321–328

    Article  Google Scholar 

  • Goedert JL, Peckmann J, Benham SR, Janssen AW (2013) First record of the Eocene pteropod Heliconoides nitens (Gastropoda: Thecosomata: Limacinidae) from the Pacific Basin. Proc Biol Soc Wash 126:72–82

    Article  Google Scholar 

  • Goossens H, De Leeuw J, Schenck P, Brassell S (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312:440–442

    Article  Google Scholar 

  • Greinert J, Derkachev A (2004) Glendonites and methane-derived Mg-calcites in the Sea of Okhotsk, Eastern Siberia: implications of a venting-related ikaite/glendonite formation. Mar Geol 204:129–144

    Article  Google Scholar 

  • Hagemann A, Leefmann T, Peckmann J, Hoffmann VE, Thiel V (2013) Biomarkers from individual carbonate phases of an Oligocene cold-seep deposit, Washington State, USA. Lethaia 46:7–18

    Article  Google Scholar 

  • Han X, Schultz L, Zhang W, Zhu J, Meng F, Geesey GG (2016) Mineral formation during bacterial sulfate reduction in the presence of different electron donors and carbon sources. Chem Geol 435:49–59

    Article  Google Scholar 

  • Hansen MO, Buchardt B, Kühl M, Elberling B (2011) The fate of the submarine ikaite tufa columns in southwest Greenland under changing climate conditions. J Sediment Res 81:553–561

    Article  Google Scholar 

  • Hayes JM, Strauss H, Kaufman AJ (1999) The abundance of 13C in marine organic matter and isotopic fractionation in the global biogeochemical cycle of carbon during the past 800 Ma. Chem Geol 161:103–125

    Article  Google Scholar 

  • Heindel K, Birgel D, Brunner B, Thiel V, Westphal H, Gischler E, Ziegenbalg SB, Cabioch G, Sjövall P, Peckmann J (2012) Post-glacial microbialite formation in coral reefs of the Pacific, Atlantic, and Indian Oceans. Chem Geol 304–305:117–130

    Article  Google Scholar 

  • Hinrichs K-U, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  Google Scholar 

  • Hoffmann-Sell L, Birgel D, Arning ET, Föllmi KB, Peckmann J (2011) Archaeal lipids in Neogene dolomites (Monterey and Sisquoc Formations, California)—Planktic versus benthic archaeal sources. Org Geochem 42:593–604

    Article  Google Scholar 

  • Huggett J, Schultz B, Shearman D, Smith A (2005) The petrology of ikaite pseudomorphs and their diagenesis. Proc Geol Assoc 116:207–220

    Article  Google Scholar 

  • Irwin H, Curtis C, Coleman M (1977) Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269:209–213

    Article  Google Scholar 

  • James NP, Narbonne GM, Dalrymple RW, Kyser TK (2005) Glendonites in Neoproterozoic low-latitude, interglacial, sedimentary rocks, northwest Canada: insights into the Cryogenian ocean and Precambrian cold-water carbonates. Geology 33:9–12

    Article  Google Scholar 

  • Joachimski MM, Buggisch W (1999) Hydrothermal origin of Devonian conical mounds (kess-kess) of Hamar Lakhdad Ridge, Anti-Atlas, Morocco: comment. Geology 27:863

    Article  Google Scholar 

  • Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286

    Article  Google Scholar 

  • Kiel S (2010a) On the potential generality of depth-related ecologic structure in cold-seep communities: evidence from Cenozoic and Mesozoic examples. Palaeogeogr Palaeoclimatol Palaeoecol 295:245–257

    Article  Google Scholar 

  • Kiel S (2010b) An Eldorado for paleontologists: the Cenozoic seeps of western Washington State, USA. In: Kiel S (ed) Vent and seep biota: aspects from microbes to ecosystems. Springer, Dordrecht, pp 433–448

    Chapter  Google Scholar 

  • Kodina L, Tokarev V, Korobeinik G, Vlasova L, Bogacheva M (2008) Natural background of hydrocarbon gases (C1–C5) in the waters of the Kara Sea. Geochem Int 46:666–678

    Article  Google Scholar 

  • Koga Y, Morii H, Akagawa-Matsushita M, Ohga M (1998) Correlation of polar lipid composition with 16S rRNA phylogeny in methanogens. Further analysis of lipid component parts. Biosci Biotechnol Biochem 62:230–236

    Article  Google Scholar 

  • Kuechler RR, Birgel D, Kiel S, Freiwald A, Goedert JL, Thiel V, Peckmann J (2012) Miocene methane-derived carbonates from southwestern Washington, USA and a model for silicification at seeps. Lethaia 45:259–273

    Article  Google Scholar 

  • Last FM, Last WM, Halden NM (2010) Carbonate microbialites and hardgrounds from Manito Lake, an alkaline, hypersaline lake in the northern Great Plains of Canada. Sed Geol 225:34–49

    Article  Google Scholar 

  • Little CTS, Birgel D, Boyce AJ, Crame JA, Francis JE, Kiel S, Peckmann J, Pirrie D, Rollinson GK, Witts JD (2015) Late Cretaceous (Maastrichtian) shallow-water hydrocarbon seeps from Snow Hill and Seymour Islands, James Ross Basin, Antarctica. Palaeogeogr Palaeoclimatol Palaeoecol 418:213–228

    Article  Google Scholar 

  • Londry K, Jahnke L, Des Marais D (2004) Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Appl Environ Microbiol 70:745–751

    Article  Google Scholar 

  • Loyd SJ, Berelson WM, Lyons TW, Hammond DE, Corsetti FA (2012) Constraining pathways of microbial mediation for carbonate concretions of the Miocene Monterey Formation using carbonate-associated sulfate. Geochim Cosmochim Acta 78:77–98

    Article  Google Scholar 

  • Lu Z, Rickaby RE, Kennedy H, Kennedy P, Pancost RD, Shaw S, Lennie A, Wellner J, Anderson JB (2012) An ikaite record of late Holocene climate at the Antarctic Peninsula. Earth Planet Sci Lett 325:108–115

    Article  Google Scholar 

  • Mikkelsen A, Andersen A, Engelsen S, Hansen H, Larsen O, Skibsted L (1999) Presence and dehydration of ikaite, calcium carbonate hexahydrate, in frozen shrimp shell. J Agric Food Chem 47:911–917

    Article  Google Scholar 

  • Moore EJ (1984) Molluscan paleontology and biostratigraphy of the lower Miocene upper part of the Lincoln Creek Formation in southwestern Washington. Contrib Sci 351:1–42

    Google Scholar 

  • Naraoka H, Ishiwatari R (2000) Molecular and isotopic abundances of long-chain n-fatty acids in open-marine sediments of the western North Pacific. Chem Geol 165:23–36

    Article  Google Scholar 

  • Natalicchio M, Birgel D, Dela Pierre F, Martire L, Clari P, Spötl C, Peckmann J (2012) Polyphasic carbonate precipitation in the shallow subsurface: insights from microbially-formed authigenic carbonate beds in upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy). Palaeogeogr Palaeoclimatol Palaeoecol 329:158–172

    Article  Google Scholar 

  • Nesbitt EA, Martin RA, Carroll NP, Grieff J (2010) Reassessment of the Zemorrian foraminiferal stage and Juanian molluscan stage north of the Olympic Mountains, Washington State and Vancouver Island. Newsl Stratigr 43:275–291

    Article  Google Scholar 

  • Nesbitt EA, Martin RA, Campbell KA (2013) New records of Oligocene diffuse hydrocarbon seeps, northern Cascadia margin. Palaeogeogr Palaeoclimatol Palaeoecol 390:116–129

    Article  Google Scholar 

  • Pauly H (1963) “Ikaite”, a new mineral from Greenland. Arctic 16:263–264

    Article  Google Scholar 

  • Paytan A, Kastner M, Campbell D, Thiemens MH (1998) Sulfur isotopic composition of Cenozoic seawater sulfate. Science 282:1459–1462

    Article  Google Scholar 

  • Pearson MJ, Hendry JP, Taylor CW, Russell MA (2005) Fatty acids in sparry calcite fracture fills and microsparite cement of septarian diagenetic concretions. Geochim Cosmochim Acta 69:1773–1786

    Article  Google Scholar 

  • Peckmann J, Thiel V (2004) Carbon cycling at ancient methane-seeps. Chem Geol 205:443–467

    Article  Google Scholar 

  • Peckmann J, Goedert JL, Thiel V, Michaelis W, Reitner J (2002) A comprehensive approach to the study of methane-seep deposits from the Lincoln Creek Formation, western Washington State, USA. Sedimentology 49:855–873

    Article  Google Scholar 

  • Peckmann J, Goedert JL, Heinrichs T, Hoefs J, Reitner J (2003) The Late Eocene ‘Whiskey Creek’ methane-seep deposit (western Washington State)—part II: petrology, stable isotopes, and biogeochemistry. Facies 48:241–254

    Article  Google Scholar 

  • Peckmann J, Senowbari-Daryan B, Birgel D, Goedert JL (2007) The crustacean ichnofossil Palaxius associated with callianassid body fossils in an Eocene methane-seep limestone, Humptulips Formation, Olympic Peninsula, Washington. Lethaia 40:273–280

    Article  Google Scholar 

  • Present TM, Paris G, Burke A, Fischer WW, Adkins JF (2015) Large carbonate associated sulfate isotopic variability between brachiopods, micrite, and other sedimentary components in Late Ordovician strata. Earth Planet Sci Lett 432:187–198

    Article  Google Scholar 

  • Price GD, Nunn EV (2010) Valanginian isotope variation in glendonites and belemnites from Arctic Svalbard: transient glacial temperatures during the Cretaceous greenhouse. Geology 38:251–254

    Article  Google Scholar 

  • Prothero DR, Armentrout JM (1985) Magnetostratigraphic correlation of the Lincoln Creek Formation, Washington: implications for the age of the Eocene/Oligocene boundary. Geology 13:208–211

    Article  Google Scholar 

  • Prothero DR, Hoffman JM, Goedert JL (2008) Paleomagnetism of the Oligocene and Miocene Lincoln Creek and Astoria Formations, Knappton, Washington. Nat Hist Mus Los Angel Cty Sci Ser 41:63–72

    Google Scholar 

  • Rau WW (1964) Foraminifera from the northern Olympic Peninsula, Washington. US Geol Surv Prof Pap 374-G:1–33

    Google Scholar 

  • Rau WW (1966) Stratigraphy and Foraminifera of the Satsop River area, southern Olympic Peninsula, Washington. State Wash Div Mines Geol Bull 53:1–66

    Google Scholar 

  • Rau WW (1986) Geologic map of the Humptulips quadrangle and adjacent areas, Grays Harbor County, Washington. Washington State Department of Natural Resources Geologic Map GM-33, Department of Natural Resources, Olympia, Washington

  • Rees CE (1973) A steady-state model for sulphur isotope fractionation in bacterial reduction processes. Geochim Cosmochim Acta 37:1141–1162

    Article  Google Scholar 

  • Rice CA, Tuttle ML, Reynolds RL (1993) The analysis of forms of sulfur in ancient sediments and sedimentary rocks: comments and cautions. Chem Geol 107:83–95

    Article  Google Scholar 

  • Rickaby REM, Shaw S, Bennitt G, Kennedy H, Zabel M, Lennie A (2006) Potential of ikaite to record the evolution of oceanic δ18O. Geology 34:497–500

    Article  Google Scholar 

  • Ritger S, Carson B, Suess E (1987) Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geol Soc Am Bull 98:147–156

    Article  Google Scholar 

  • Rowland SJ, Robson JN (1990) The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons in recent sediments and biota—a review. Mar Environ Res 30:191–216

    Article  Google Scholar 

  • Rütters H, Sass H, Cypionka H, Rullkötter J (2001) Monoalkylether phospholipids in the sulfate-reducing bacteria Desulfosarcina variabilis and Desulforhabdus amnigenus. Arch Microbiol 176:435–442

    Article  Google Scholar 

  • Schidlowski M (2001) Carbon isotopes as biogeochemical recorders of life over 3.8 Ga of Earth history: evolution of a concept. Precambr Res 106:117–134

    Article  Google Scholar 

  • Schubert C, Nürnberg D, Scheele N, Pauer F, Kriews M (1997) 13C isotope depletion in ikaite crystals: evidence for methane release from the Siberian shelves? Geo-Mar Lett 17:169–174

    Article  Google Scholar 

  • Selleck BW, Carr PF, Jones BG (2007) A review and synthesis of glendonites (pseudomorphs after ikaite) with new data: assessing applicability as recorders of ancient coldwater conditions. J Sediment Res 77:980–991

    Article  Google Scholar 

  • Sim MS, Bosak T, Ono S (2011) Large sulfur isotope fractionation does not require disproportionation. Science 333:74–77

    Article  Google Scholar 

  • Snavely PD Jr, Neim AR, Pearl JE (1978) Twin River Group (upper Eocene to lower Miocene)—defined to include the Hoko River, Makah, and Pysht Formations, Clallam County, Washington. In: Changes in stratigraphic nomenclature by the US Geological Survey, 1977. United States Geological Survey Bulletin 1457-A, pp. A111–A120

  • Suess E, Balzer W, Hesse K-F, Müller P, Ungerer C, Wefer G (1982) Calcium carbonate hexahydrate from organic-rich sediments of the Antarctic shelf: precursors of glendonites. Science 216:1128–1131

    Article  Google Scholar 

  • Taylor J, Parkes RJ (1983) The cellular fatty acids of the sulphate-reducing bacteria, Desulfobacter sp., Desulfobulbus sp. and Desulfovibrio desulfuricans. J Gen Microbiol 129:3303–3309

    Google Scholar 

  • Teichert BMA, Luppold F (2013) Glendonites from an early Jurassic methane seep—climate or methane indicators? Palaeogeogr Palaeoclimatol Palaeoecol 390:81–93

    Article  Google Scholar 

  • Tong H, Wang Q, Peckmann J, Cao Y, Chen L, Zhou W, Chen D (2016) Diagenetic alteration affecting δ18O, δ13C and 87Sr/86Sr signatures of carbonates: a case study on Cretaceous seep deposits from Yarlung-Zangbo Suture Zone, Tibet, China. Chem Geol 444:71–82

    Article  Google Scholar 

  • Vance JA, Clayton GA, Mattinson JM, Naeser CW (1987) Early and middle Cenozoic stratigraphy of the Mount Rainier-Tieton River area, southern Washington Cascades. Selected papers on the geology of Washington. Wash Div Geol Earth Res Bull 77:269–290

    Google Scholar 

  • Viso A-C, Marty J-C (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34:1521–1533

    Article  Google Scholar 

  • Volkman JK, Barrett SM, Dunstan GA (1994) C25 and C30 highly branched isoprenoid alkenes in laboratory cultures of two marine diatoms. Org Geochem 21:407–414

    Article  Google Scholar 

  • Wakeham SG (1995) Lipid biomarkers for heterotrophic alteration of suspended particulate organic matter in oxygenated and anoxic water columns of the ocean. Deep Sea Res Part I 42:1749–1771

    Article  Google Scholar 

  • Wells R (1989) Geologic map of the Cape Disappointment-Naselle River area, Pacific and Wahiakum Counties, Washington. USGS Miscellaneous Investigations series Map I-1832, United States Geological Survey, Reston, Virginia

  • Wolfe EW, McKee EH (1968) Geology of the Grays River quadrangle, Wahkiakum and Pacific counties, Washington. State of Washington, Department of Natural Resources Geologic Map GM-4, Department of Natural Resources, Olympia, Washington

  • Wolfe EW, McKee EH (1972) Sedimentary and igneous rocks of the Grays River quadrangle, Washington. US Geol Surv Bull 1335:1–70

    Google Scholar 

  • Wortmann UG, Bernasconi SM, Böttcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650

    Article  Google Scholar 

  • Wotte T, Strauss H, Fugmann A, Garbe-Schönberg D (2012) Paired δ34S data from carbonate-associated sulfate and chromium-reducible sulfur across the traditional lower-middle Cambrian boundary of W-Gondwana. Geochim Cosmochim Acta 85:228–253

    Article  Google Scholar 

  • Zerkle AL, House CH, Brantley SL (2005) Biogeochemical signatures through time as inferred from whole microbial genomes. Am J Sci 305:467–502

    Article  Google Scholar 

  • Ziegenbalg SB, Brunner B, Rouchy J-M, Birgel D, Pierre C, Böttcher ME, Caruso A, Immenhauser A, Peckmann J (2010) Formation of secondary carbonates and native sulphur in sulphate-rich Messinian strata, Sicily. Sed Geol 227:37–50

    Article  Google Scholar 

Download references

Acknowledgements

Many thanks to Green Diamond Resource Company, Shelton, Washington, for access to their forest land. Artur Fugman is gratefully acknowledged for his skillful laboratory work in the Münster Isotope Research Center (MIRC) as well as Frank Melcher and Jerzy Lodziak (BGR) for microprobe analyses. Many thanks to Joachim Reitner (University Göttingen) for providing access to cathodoluminescence. Insightful comments by Benjamin Brunner (El Paso, Texas, USA) and an anonymous referee helped improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Peckmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Teichert, B.M.A., Birgel, D. et al. The prominent role of bacterial sulfate reduction in the formation of glendonite: a case study from Paleogene marine strata of western Washington State. Facies 63, 10 (2017). https://doi.org/10.1007/s10347-017-0492-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-017-0492-1

Keywords

Navigation