Skip to main content
Log in

Particle focusing in microfluidic devices

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Focusing particles (both biological and synthetic) into a tight stream is usually a necessary step prior to counting, detecting, and sorting them. The various particle focusing approaches in microfluidic devices may be conveniently classified as sheath flow focusing and sheathless focusing. Sheath flow focusers use one or more sheath fluids to pinch the particle suspension and thus focus the suspended particles. Sheathless focusers typically rely on a force to manipulate particles laterally to their equilibrium positions. This force can be either externally applied or internally induced by channel topology. Therefore, the sheathless particle focusing methods may be further classified as active or passive by the nature of the forces involved. The aim of this article is to introduce and discuss the recent developments in both sheath flow and sheathless particle focusing approaches in microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ai Y, Joo SW, Jiang Y, Xuan X, Qian S (2009) Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current dielectrophoretic force. Electrophoresis 30:2499–2506

    Article  Google Scholar 

  • Ai Y, Park S, Zhu J, Xuan X, Beskok A, Qian S (2010a) DC electrokinetic particle transport in an L-shaped microchannel. Langmuir 26:2937–2944

    Article  Google Scholar 

  • Ai Y, Qian S, Liu S, Joo SW (2010b) Dielectrophoretic choking phenomenon in a converging-diverging microchannel. Biomicrofluidics 4:013201

    Article  Google Scholar 

  • Anderson JL (1989) Colloid transport by interfacial forces. Annu Rev Fluid Mech 21:61–99

    Article  Google Scholar 

  • Aoki R, Yamada M, Yasuda M, Seki M (2009) In-channel focusing of flowing microparticles utilizing hydrodynamic filtration. Microfluid Nanofluid 6:571–576

    Article  Google Scholar 

  • Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    Article  MATH  Google Scholar 

  • Ateya DA, Erickson JS, Howell PB Jr, Hilliard LR, Golden JP, Ligler FS (2008) The good, the bad, and the tiny: a review of microflow cytometry. Anal Bioanal Chem 391:1485–1498

    Article  Google Scholar 

  • Barbulovic-Nad I, Xuan X, Lee JSH, Li D (2006) DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab Chip 6:274–279

    Article  Google Scholar 

  • Barrett LM, Skulan AJ, Singh AK, Cummings EB, Fiechtner GJ (2005) Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal Chem 77:6798–6804

    Article  Google Scholar 

  • Berger A, Talbot L, Yao LS (1983) Flow in curved pipes. Annu Rev Fluid Mech 15:461–512

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008a) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluid 20:101702

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008b) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7:221–230

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2010) Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed Microdev. doi:10.1007/s10544-009-9374-9

  • Braschler T, Demierre N, Nascimento E, Silva T, Oliva AG, Renaud P (2008) Continuous separation of cells by balanced dielectrophoretic forces at multiple frequencies. Lab Chip 8:280–286

    Article  Google Scholar 

  • Chang CC, Huang ZY, Yang RJ (2007) Three-dimensional hydrodynamic focusing in two-layer polydimethylsiloxane (PDMS) microchannels. J Micromech Microeng 17:1479–1486

    Article  Google Scholar 

  • Chau LK, Osborn T, Wu CC, Yager P (1999) Microfabricated silicon flow-cell for optical monitoring of biological fluids. Anal Sci 15:721–724

    Article  Google Scholar 

  • Cheng IF, Chang HC, Hou D, Chang HC (2007) An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics 1:021503 (1–15)

    Google Scholar 

  • Cho YK, Kim S, Lee K, Park C, Lee JG, Ko C (2009) Bacteria concentration using a membrane type insulator-based dielectrophoresis in a plastic chip. Electrophoresis 30:3153–3159

    Article  Google Scholar 

  • Choi S, Park JK (2007) Continuous hydrophoretic separation and sizing of microparticles using slanted obstacles in a microchannel. Lab Chip 7:890–897

    Article  Google Scholar 

  • Choi S, Park JK (2008) Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays. Anal Chem 80:3035–3039

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2007) Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–1538

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2008) Sheathless focusing of microbeads and blood cells based on hydrophoresis. Small 4:634–641

    Article  Google Scholar 

  • Choi KH, Rehmani MAA, Doh I, Cho Y (2009a) Numerical study of particle focusing through improved lab-on-a-chip device by positive dielectrophoresis. Microsyst Technol 15:1059–1065

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2009b) Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal Chem 81:50–55

    Article  Google Scholar 

  • Choi S, Song S, Choi C, Park JK (2009c) Microfluidic self-sorting of mammalian cells to achieve cell cycle synchrony by hydrophoresis. Anal Chem 81:1964–1968

    Article  Google Scholar 

  • Chou CF, Zenhausern F (2003) Electrodeless dielectrophoresis for micro total analysis systems. IEEE Eng Med Biol Mag 22:62–67

    Article  Google Scholar 

  • Chou CF, Tegenfeldt JO, Bakajin O, Chan SS, Cox EC, Darnton N, Duke T, Austin RH (2002) Electrodeless dielectrophoresis of single- and double-stranded DNA. Biophys J 83:2170–2179

    Article  Google Scholar 

  • Chu H, Doh I, Cho Y (2009) A three-dimensional (3D) particle focusing channel using the positive dielectrophoresis (pDEP) guided by a dielectric structure between two planar electrodes. Lab Chip 9:686–691

    Article  Google Scholar 

  • Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28:4511–4520

    Article  Google Scholar 

  • Church C, Zhu J, Wang G, Tzeng TJ, Xuan X (2009) Electrokinetic focusing and filtration of cells in a serpentine microchannel. Biomicrofluidics 3:044109

    Article  Google Scholar 

  • Clarke RW, White SS, Zhou D, Ying L, Klenerman D (2005) Trapping of proteins under physiological conditions in a nanopipette. Angew Chem 44:3747–3750

    Article  Google Scholar 

  • Cummings EB, Singh AK (2000) Dielectrophoretic trapping without embedded electrodes. In: Proceedings of SPIE conference micromachining microfabrication, vol 4177, pp 164–173

  • Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal Chem 75:4724–4731

    Article  Google Scholar 

  • Davison SM, Sharp KV (2008) Transient simulations of the electrophoretic motion of a cylindrical particle through a 90° corner. Microfluid Nanofluid 4:409–418

    Article  Google Scholar 

  • Demierre N, Braschler T, Muller R (2008) Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis. Sens Actuators B 132:388–396

    Article  Google Scholar 

  • Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046

    Article  Google Scholar 

  • Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104:18892–18897

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102:094503

    Article  Google Scholar 

  • Edd JF, Di Carlo D, Humphry KJ, Koester S, Irimia D, Weitz DA, Toner M (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8:1262–1264

    Article  Google Scholar 

  • Faivre M, Abkarian M, Bickraj K, Stone HA (2006) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology 43:147–159

    Google Scholar 

  • Fu AY, Spence C, Scherer A, Arnold FH, Quake SRA (1999) Microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  Google Scholar 

  • Fu LM, Yang RJ, Lin C, Pan Y, Lee GB (2004) Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Anal Chim Acta 507:163–169

    Article  Google Scholar 

  • Fu LM, Tsai CH, Lin CH (2008) A high-discernment microflow cytometer with microweir structure. Electrophoresis 29:1874–1880

    Article  Google Scholar 

  • Gallo-Villanueva RC, Rodriguez-Lopez CE, Diaz-de-la-Garza RI, Reyes-Betanzo C, Lapizco-Encinas BH (2009) DNA manipulation by means of insulator-based dielectrophoresis employing direct current electric fields. Electrophoresis 30:4195–4205

    Article  Google Scholar 

  • Gascoyne PRC, Vykoukal JV (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983

    Article  Google Scholar 

  • Gascoyne PRC, Vykoukal JV (2004) Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc IEEE 92:22–42

    Article  Google Scholar 

  • Goddard GR, Martin JC, Graves SW, Kaduchak G (2006) Ultrasonic particle concentration for sheath-less focusing of particles for analysis in a flow cytometer. Cytometry 69A:66–74

    Article  Google Scholar 

  • Goddard GR, Sanders CK, Martin JC, Kaduchak G, Graves SW (2007) Analytical performance of an ultrasonicparticle focusing flow cytometer. Anal Chem 79:8740–8746

    Article  Google Scholar 

  • Godin J, Chen C, Cho SH, Qiao W, Tsai F, Lo Y (2008) Microfluidics and photonics for bio-system-on-a-chip: a review of advancements in technology towards a microfluidic flow cytometry chip. J Biophoton 1:355–376

    Article  Google Scholar 

  • Golden JP, Kim JS, Erickson JS, Hilliard LR, Howell PB, Anderson GP, Nasir M, Ligler FS (2009) Multi-wavelength microflow cytometer using groove-generated sheath flow. Lab Chip 9:1942–1950

    Article  Google Scholar 

  • Gossett DR, Di Carlo D (2009) Particle focusing mechanisms in curving confined flows. Anal Chem 81:2459–2465

    Article  Google Scholar 

  • Hairer G, Vellekoop MJ (2009) An integrated flow-cell for full sample stream control. Microfluid Nanofluid 7:647–658

    Article  Google Scholar 

  • Hairer G, Parr GS, Svasek P, Jachimowicz A, Vellekoop MJ (2008) Investigations of micrometer sample stream profiles in a three-dimensional hydrodynamic focusing device. Sens Actuators B 132:518–524

    Article  Google Scholar 

  • Hawkins BG, Smith AE, Syed YA, Kirby BJ (2007) Continuous-flow particle separation by 3D insulative dielectrophoresis using coherently shaped, DC-biased, AC electric fields. Anal Chem 79:7291–7300

    Article  Google Scholar 

  • Holmes D, Morgan H, Green NG (2006) High throughput particle analysis: combining dielectrophoretic particle focusing with confocal optical detection. Biosens Bioelectron 21:1621–1630

    Article  Google Scholar 

  • Hou HH, Tsai CH, Fu LM, Yang RJ (2009) Experimental and numerical investigation into micro-flow cytometer with 3-D hydrodynamic focusing effect and micro-weir structure. Electrophoresis 30:2507–2515

    Article  Google Scholar 

  • Howell PB, Golden JP, Hilliard LR, Erickson JS, Mott DR, Ligler FS (2008) Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8:1097–1103

    Article  Google Scholar 

  • Hsu CH, Di Carlo D, Chen CC, Irimia D, Toner M (2008) Microvortex for focusing, guiding and sorting of particles. Lab Chip 8:2128–2134

    Article  Google Scholar 

  • Hughes MP (2002) Strategies for dielectrophoretic separation in laboratory-on-a-chip systems. Electrophoresis 23:2569–2582

    Article  Google Scholar 

  • Huh D, Gu W, Kamotani Y, Grotgerg JB, Takayama S (2005) Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26:R73–R98

    Article  Google Scholar 

  • Hur SC, Tse HTK, Di Carlo D (2009) Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip. doi:10.1039/b919495a

  • Jeffrey RC, Pearson JRA (1965) Particle motion in laminar vertical tube flow. J Fluid Mech 22:721–735

    Article  Google Scholar 

  • Jen CP, Chen TW (2008) Selective trapping of live and dead mammalian cells using insulator-based dielectrophoresis within open-top microstructures. Biomed Microdev 11:597–607

    Article  Google Scholar 

  • Kang K, Kang Y, Xuan X, Li D (2006) Continuous separation of microparticles by size with DC-dielectrophoresis. Electrophoresis 27:694–702

    Article  Google Scholar 

  • Kang Y, Li D, Kalams SA, Eid JE (2008) DC-dielectrophoretic separation of biological cells by size. Biomed Microdev 10:243–249

    Article  Google Scholar 

  • Kang Y, Cetin B, Wu Z, Li D (2009) Continuous particle separation with localized AC-dielectrophoresis using embedded electrodes and an insulating hurdle. Electrochim Acta 54:1715–1720

    Article  Google Scholar 

  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2:1–13

    Article  Google Scholar 

  • Kim YW, Yoo JY (2008) The lateral migration of neutrally-buoyant spheres transported through square microchannels. J Micromech Microeng 18:065015(1–13)

  • Kim YW, Yoo JY (2009a) Axisymmetric flow focusing of particles in a single microchannel. Lab Chip 9:1043–1045

    Article  Google Scholar 

  • Kim YW, Yoo JY (2009b) Three-dimensional focusing of red blood cells in microchannels for bio-sensing applications. Biosens Bioelectron 24:3677–3682

    Article  Google Scholar 

  • Kim JS, Anderson GP, Erickson JS, Golden JP, Nasir M, Ligler FS (2009) Multiplexed detection of bacteria and toxins using a microflow cytometer. Anal Chem 81:5426–5432

    Article  Google Scholar 

  • Kohlheyer D, Unnikrishnan S, Besselink GAJ, Schlautmann S, Schasfoort RBM (2008) A microfluidic device for array patterning by perpendicular electrokinetic focusing. Microfluid Nanofluid 4:557–564

    Article  Google Scholar 

  • Kulrattanarak T, van der Sman RGM, Schroen CGPH, Boom RM (2008) Classification and evaluation of microfluidic devices for continuous suspension fractionation. Adv Colloid Interface Sci 142:53–65

    Article  Google Scholar 

  • Kummrow A, Theisen J, Frankowski M, Tuchscheerer A, Yildirim H, Brattke K, Schmidt M, Neukammer J (2009) Microfluidic structures for flow cytometric analysis of hydrodynamically focussed blood cells fabricated by ultraprecision micromachining. Lab Chip 9:972–981

    Article  Google Scholar 

  • Kuntaegowdanahalli S, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980

    Article  Google Scholar 

  • Lapizco-Encinas BH, Rito-Palmomares M (2007) Dielectrophoresis for the manipulation of nanoparticles. Electrophoresis 28:4521–4538

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004a) Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. Anal Chem 76:1571–1579

    Article  Google Scholar 

  • Lapizco-Encinas BH, Simmons BA, Cummings EB, Fintschenko Y (2004b) Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis 25:1695–1704

    Article  Google Scholar 

  • Lapizco-Encinas BH, Davalos RV, Simmons BA, Cummings EB, Fintschenko Y (2005) An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. J Microbiol Method 62:317–326

    Article  Google Scholar 

  • Lapizco-Encinas BH, Ozuna-Chacon S, Rito-Palomares M (2008) Protein manipulation with insulator-based dielectrophoresis and DC electric fields. J Chromatogr A 1206:45–51

    Article  Google Scholar 

  • Leal LG (1980) Particle motions in a viscous fluid. Annu Rev Fluid Mech 12:435–476

    Article  MathSciNet  Google Scholar 

  • Lee GB, Lin C, Chang G (2003) Micro flow cytometers with buried SU-8/SOG optical waveguides. Sens Actuators A 103:165–170

    Article  Google Scholar 

  • Lee GB, Chang CC, Huang SB, Yang RJ (2006) The hydrodynamic focusing effect in rectangular microchannels. J Micromech Microeng 16:1024–1032

    Article  Google Scholar 

  • Lee MG, Choi S, Park JK (2009) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9:3155–3160

    Article  Google Scholar 

  • Lewpiriyawong N, Yang C, Lam YC (2008) Dielectrophoretic manipulation of particles in a modified microfluidic H-Filter with multi-insulating blocks. Biomicrofluidics 2:034105

    Article  Google Scholar 

  • Lin CH, Lee GB, Fu LM, Hwey BH (2004) Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer. J Microelectromech Syst 13:923–932

    Article  Google Scholar 

  • Lin R, Ho C, Liu C, Chang H (2006) Dielectrophoresis based-cell patterning for tissue engineering. Biotechnol J 1:949–957

    Article  Google Scholar 

  • Liu C, Stakenborg T, Peeters S, Lagae L (2009) Cell manipulation with magnetic particles toward microfluidic cytometry. J Appl Phys 105:102014

    Article  Google Scholar 

  • Mao X, Huang TJ (2008) Focusing fluids and light in micro/nano scale—enabling technologies for single-particle detection. IEEE Nanotechnol Mag 2:22–27

    Article  Google Scholar 

  • Mao X, Waldeisen JR, Huang TJ (2007) “Microfluidic drifting”—implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device. Lab Chip 7:1260–1262

    Article  Google Scholar 

  • Mao X, Lin SS, Dong C, Huang TJ (2009) Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9:1583–1589

    Article  Google Scholar 

  • Morgan H, Green NG (2002) AC electrokinetics: colloids and nanoparticles. Research Studies Press, Hertfordshire

    Google Scholar 

  • Morton KJ, Loutherback K, Inglis DW, Tsui OK, Sturm JC, Chou SY, Austin RH (2008) Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc Natl Acad Sci 105:7434–7438

    Article  Google Scholar 

  • Ozuna-Chacon S, Lapizco-Encinas BH, Rito-Palomares M, Martínez-Chapa SO, Reyes-Betanzo C (2008) Performance characterization of an insulator-based dielectrophoretic microdevice. Electrophoresis 29:3115–3122

    Article  Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Article  Google Scholar 

  • Park J, Song S, Jung H (2009) Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9:939–948

    Article  Google Scholar 

  • Petersson F, Nilsson A, Jonsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221

    Article  Google Scholar 

  • Petersson F, Aberg L, Sword-Nilsson AM, Laurell T (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123

    Article  Google Scholar 

  • Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge

    Google Scholar 

  • Prinz C, Tegenfeldt JO, Austin RH, Cox EC, Sturm JC (2002) Bacterial chromosome extraction and isolation. Lab Chip 2:207–212

    Article  Google Scholar 

  • Pysher MD, Hayes MA (2007) Electrophoretic and dielectrophoretic field gradient technique for separating bioparticles. Anal Chem 79:4552–4557

    Article  Google Scholar 

  • Repetti RV, Leonard EF (1964) Segré-Silberberg annulus formation: a possible explanation. Nature 203:1346–1348

    Article  Google Scholar 

  • Rodriguez-Trujillo R, Mills CA, Samitier J, Gomila G (2007) Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid Nanofluid 3:171–176

    Article  Google Scholar 

  • Russom A, Gupta AK, Nagrath S, Di Carlo D, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11:075025

    Article  Google Scholar 

  • Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22:385–400

    Article  MATH  Google Scholar 

  • Scott R, Sethu P, Harnett CK (2008) Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter. Rev Sci Instrum 79:046104

    Article  Google Scholar 

  • Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007a) Membrane-free microfilltration by asymmetric inertial migration. Appl Phys Lett 91:033901

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007b) Membraneless microseparation by asymmetry in curvilinear laminar flows. J Chromatogr A 1162:126–131

    Article  Google Scholar 

  • Shi J, Mao X, Ahmed D, Colletti A, Huang TJ (2008) Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab Chip 8:221–223

    Article  Google Scholar 

  • Shi J, Ahmed D, Mao D, Lin SS, Huang TJ (2009a) Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab Chip 9:2890–2895

    Article  Google Scholar 

  • Shi J, Huang H, Stratton Z, Lawit A, Huang Y, Huang TJ (2009b) Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 9:3354–3359

    Article  Google Scholar 

  • Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423–440

    Article  Google Scholar 

  • Tanaka Y, Sato K, Shimizu T, Yamato M, Okano T, Kitamori T (2007) Biological cells on microchips: new technologies and applications. Biosens Bioelectron 23:449–458

    Article  Google Scholar 

  • Thwar PK, Linderman JJ, Burns MA (2007) Electrodeless direct current dielectrophoresis using reconfigurable field-shaping oil barriers. Electrophoresis 28:4572–4581

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. Annu Rev Biomed Eng 7:77–103

    Article  Google Scholar 

  • Tsai CG, Hou HH, Fu LM (2008) An optimal three-dimensional focusing technique for micro-flow cytometers. Microfluid Nanofluid 5:827–836

    Article  Google Scholar 

  • Tsutsui H, Ho CM (2009) Cell separation by non-inertial force fields in microfluidic systems. Mech Res Commun 36:92–103

    Article  Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Article  Google Scholar 

  • Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP (2009) Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30:1–10

    Article  MATH  Google Scholar 

  • Watkins N, Venkatesan BM, Toner M, Rodriguez W, Bashir R (2009) A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab Chip 9:3177–3184

    Article  Google Scholar 

  • Xuan X, Li D (2005) Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels. Electrophoresis 26:3552–3560

    Article  Google Scholar 

  • Xuan X, Raghibizadeh S, Li D (2006) Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. J Colloid Interface Sci 296:743–748

    Article  Google Scholar 

  • Yamada M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239

    Article  Google Scholar 

  • Yamada M, Seki M (2006) Microfluidic particle sorter employing flow splitting and recombining. Anal Chem 78:1357–1362

    Article  Google Scholar 

  • Yamada M, Kano K, Tsuda Y, Kobayashi J, Yamato M, Seki M, Okano T (2007) Microfluidic devices for size-dependent separation of liver cells. Biomed Microdev 9:637–645

    Article  Google Scholar 

  • Yamada M, Kobayashi J, Yamato M, Seki M, Okano T (2008) Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. Lab Chip 8:772–778

    Article  Google Scholar 

  • Yang RJ, Chang CC, Huang SB, Lee GB (2005) A new focusing model and switching approach for electrokinetic flow inside microchannels. J Micromech Microeng 15:2141–2148

    Article  Google Scholar 

  • Yi CQ, Li CW, Ji SL, Yang MS (2006) Microfluidics technology for manipulation and analysis of biological cells. Anal Chim Acta 560:1–23

    Article  Google Scholar 

  • Ying LM, White SS, Bruckbauer A, Meadows L, Korchev YE, Klenerman D (2004) Frequency and voltage dependence of the dielectrophoretic trapping of short lengths of DNA and dCTP in a nanopipette. Biophys J 86:1018–1027

    Article  Google Scholar 

  • Yu C, Vykoukal J, Vykoukal DM, Schwartz JA, Shi L, Gascoyne PRC (2005) A three-dimensional dielectrophoretic particle focusing channel for microcytometry applications. J Microelectromech Syst 14:480–487

    Article  Google Scholar 

  • Zeng L, Balachandar S, Fischer P (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25

    Article  MATH  Google Scholar 

  • Zhao Y, Fujimoto BS, Jeffries GDM, Schiro PG, Chiu DT (2007) Optical gradient flow focusing. Opt Express 15:6167–6176

    Article  Google Scholar 

  • Zhu J, Xuan X (2009a) Dielectrophoretic focusing of particles in a microchannel constriction using DC-biased AC electric fields. Electrophoresis 30:2668–2675

    Article  Google Scholar 

  • Zhu J, Xuan X (2009b) Particle electrophoresis and dielectrophoresis in curved microchannels. J Colloid Interface Sci 340:285–290

    Article  Google Scholar 

  • Zhu J, Tzeng TR, Hu G, Xuan X (2009a) DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluid Nanofluid 7:751–756

    Article  Google Scholar 

  • Zhu J, Tzeng JT, Xuan X (2009b) Dielectrophoretic focusing of microparticles in curved microchannels. In: Proceedings of the ASME 2009 international mechanical engineering congress and exposition, IMECE2009-11876, Lake Buena Vista, FL

  • Zhu J, Tzeng TR, Xuan X (2010) Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis. doi:10.1002/elps.200900736 (in press)

Download references

Acknowledgements

This work was supported by NSF under grant CBET-0853873 with Marc S. Ingber as the grant monitor. The support from Clemson University through a startup package to Xuan, the Creative Inquiry Program, and the Research Investment Initiative Fund Program is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangchun Xuan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xuan, X., Zhu, J. & Church, C. Particle focusing in microfluidic devices. Microfluid Nanofluid 9, 1–16 (2010). https://doi.org/10.1007/s10404-010-0602-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0602-7

Keywords

Navigation