Skip to main content
Log in

Cyclic olefin polymers: emerging materials for lab-on-a-chip applications

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Cyclic olefin polymers (COPs) are increasingly popular as substrate material for microfluidics. This is due to their promising properties, such as high chemical resistance, low water absorption, good optical transparency in the near UV range and ease of fabrication. COPs are commercially available from a range of manufacturers under various brand names (Apel, Arton, Topas, Zeonex and Zeonor). Some of these (Apel and Topas) are made from more than one kind of monomer and therefore also known as cyclic olefin copolymers (COCs). In order to structure these materials, a wide array of fabrication methods is available. Laser ablation and micromilling are direct structuring methods suitable for fast prototyping, whilst injection moulding, hot embossing and nanoimprint lithography are replication methods more appropriate for low-cost production. Using these fabrication methods, a multitude of chemical analysis techniques have already been implemented. These include microchip electrophoresis (MCE), chromatography, solid phase extraction (SPE), isoelectric focusing (IEF) and mass spectrometry (MS). Still much additional work is needed to characterise and utilise the full potential of COP materials. This is especially true within optofluidics, where COPs are still rarely used, despite their excellent optical properties. This review presents a detailed description of the properties of COPs, the available fabrication methods and several selected applications described in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abgrall P, Conedera V, Camon H, Gue AM, Nguyen NT (2007) SU-8 as a structural material for labs-on-chips and microelectromechanical systems. Electrophoresis 28(24):4539–4551

    Google Scholar 

  • Ace Glass I (2010) Available at http://www.aceglass.com/dpro/attachment_kb.php?id=6. Accessed February 2010

  • Ahn CH, Choi JW, Beaucage G, Nevin JH, Lee JB, Puntambekar A, Lee JY (2004) Disposable Smart lab on a chip for point-of-care clinical diagnostics. Proc IEEE 92(1):154–173

    Google Scholar 

  • Angelov AK, Coulter JP (2008) The development and characterization of polymer microinjection molded gratings. Polym Eng Sci 48(11):2169–2177

    Google Scholar 

  • Appasamy S, Li WZ, Lee SH, Boyd JT, Ahn CH (2005) High-throughput plastic microlenses fabricated using microinjection molding techniques. Opt Eng 44(12):123401-1–123401-8

    Google Scholar 

  • Attia UM, Marson S, Alcock JR (2009) Micro-injection moulding of polymer microfluidic devices. Microfluid Nanofluid 7(1):1–28

    Google Scholar 

  • Becker H, Gartner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Google Scholar 

  • Becker H, Gartner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111

    Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287

    Google Scholar 

  • Bedair MF, Oleschuk RD (2006) Fabrication of porous polymer monoliths in polymeric microfluidic chips as an electrospray emitter for direct coupling to mass spectrometry. Anal Chem 78(4):1130–1138

    Google Scholar 

  • Benetton S, Kameoka J, Tan AM, Wachs T, Craighead H, Henion JD (2003) Chip-based P450 drug metabolism coupled to electrospray ionization-mass spectrometry detection. Anal Chem 75(23):6430–6436

    Google Scholar 

  • Bhattacharyya A, Klapperich CM (2006) Thermoplastic microfluidic device for on-chip purification of nucleic acids for disposable diagnostics. Anal Chem 78(3):788–792

    Google Scholar 

  • Bias M, Delaunay N, Rocca JL (2008) Electrokinetic-based injection modes for separative microsystems. Electrophoresis 29(1):20–32

    Google Scholar 

  • Bilenberg B, Nielsen T, Clausen B, Kristensen A (2004) PMMA to SU-8 bonding for polymer based lab-on-a-chip systems with integrated optics. J Micromech Microeng 14(6):814–818

    Google Scholar 

  • Bilenberg B, Hansen M, Johansen D, Ozkapici V, Jeppesen C, Szabo P, Obieta IM, Arroyo O, Tegenfeldt JO, Kristensen A (2005) Topas-based lab-on-a-chip microsystems fabricated by thermal nanoimprint lithography. J Vac Sci Technol B 23(6):2944–2949

    Google Scholar 

  • Bilenberg B, Frandsen LH, Nielsen T, Vogler M, Borel PI, Kristensen A (2006) Nanoimprint lithography of topology optimized photonic crystal devices. Conference on lasers and electro-optics and 2006 Quantum Electronics and Laser Science Conference in Long Beach, USA, IEEE

  • Bliss CL, McMullin JN, Backhouse CJ (2007) Rapid fabrication of a microfluidic device with integrated optical waveguides for DNA fragment analysis. Lab Chip 7:1280–1287

    Google Scholar 

  • Bundgaard F, Perozziello G, Geschke O (2006) Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems. Proc IME C J Mech Eng Sci 220(11):1625–1632

    Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2005) Poly(methylmethacrylate) and Topas capillary electrophoresis microchip performance with electrochemical detection. Electrophoresis 26(16):3160–3168

    Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2006a) Amperometric detector designs for capillary electrophoresis microchips. J Chrom 1109(2):291–299

    Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul MT, Costa-Garcia A (2006b) Analytical performance of CE microchips with amperometric detection. Instrum Sci Tech 34(6):697–710

    Google Scholar 

  • Castano-Alvarez M, Fernandez-Abedul M, Costa-Garcia A (2007) Electroactive intercalators for DNA analysis on microchip electrophoresis. Electrophoresis 28(24):4679–4689

    Google Scholar 

  • Chen CM, Chang GL, Lin CH (2008a) Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes. J Chrom 1194(2):231–236

    MathSciNet  Google Scholar 

  • Chen GF, Svec F, Knapp DR (2008b) Light-actuated high pressure-resisting microvalve for on-chip flow control based on thermo-responsive nanostructured polymer. Lab Chip 8(7):1198–1204

    Google Scholar 

  • Choi SH, Kim DS, Kwon TH (2009) Microinjection molded disposable microfluidic lab-on-a-chip for efficient detection of agglutination. Microsyst Technol 15(2):309–316

    Google Scholar 

  • Christensen TB, Bang DD, Wolff A (2008) Multiplex polymerase chain reaction (PCR) on a SU-8 chip. Microelectron Eng 85(5–6):1278–1281

    Google Scholar 

  • Das C, Fredrickson CK, Xia Z, Fan ZH (2007a) Device fabrication and integration with photodefinable microvalves for protein separation. Sensor Actuator Phys 134(1):271–277

    Google Scholar 

  • Das C, Zhang J, Denslow ND, Fan ZH (2007b) Integration of isoelectric focusing with multi-channel gel electrophoresis by using microfluidic pseudo-valves. Lab Chip 7(12):1806–1812

    Google Scholar 

  • Dhouib K, Malek CK, Pfleging W, Gauthier-Manuel B, Duffait R, Thuillier G, Ferrigno R, Jacquamet L, Ohana J, Ferrer JL, Theobald-Dietrich A, Giege R, Lorber B, Sauter C (2009) Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. Lab Chip 9(10):1412–1421

    Google Scholar 

  • Do J, Ahn CH (2008) A polymer lab-on-a-chip for magnetic immunoassay with on-chip sampling and detection capabilities. Lab Chip 8(4):542–549

    Google Scholar 

  • Faure K, Albert M, Dugas V, Cretier G, Ferrigno R, Morin P, Rocca JL (2008) Development of an acrylate monolith in a cyclo-olefin copolymer microfluidic device for chip electrochromatography separation. Electrophoresis 29(24):4948–4955

    Google Scholar 

  • Fredrickson CK, Xia Z, Das C, Ferguson R, Tavares FT, Fan ZH (2006) Effects of fabrication process parameters on the properties of cyclic olefin copolymer microfluidic devices. IEEE ASME J Microelectromech Syst 15(5):1060–1068

    Google Scholar 

  • Gadegaard N, Mosler S, Larsen NB (2003) Biomimetic polymer nanostructures by injection molding. Macromol Mater Eng 288(1):76–83

    Google Scholar 

  • Gerlach A, Knebel G, Guber AE, Heckele M, Herrmann D, Muslija A, Schaller T (2002) High-density plastic microfluidic platforms for capillary electrophoresis separation and high-throughput screening. Sensor Mater 14(3):119–128

    Google Scholar 

  • Gourgon C, Perret C, Tallal J, Lazzarino F, Landis S, Joubert O, Pelzer R (2005) Uniformity across 200 mm silicon wafers printed by nanoimprint lithography. J Phys D-Appl Phys 38(1):70–73

    Google Scholar 

  • Grumann M, Steigert J, Riegger L, Moser I, Enderle B, Riebeseel K, Urban G, Zengerle R, Ducree J (2006) Sensitivity enhancement for colorimetric glucose assays on whole blood by on-chip beam-guidance. Biomed Microdevices 8(3):209–214

    Google Scholar 

  • Gulliksen A, Solli LA, Drese KS, Sorensen O, Karlsen F, Rogne H, Hovig E, Sirevag R (2005) Parallel nanoliter detection of cancer markers using polymer microchips. Lab Chip 5(4):416–420

    Google Scholar 

  • Guo YL, Uchiyama K, Nakagama T, Shimosaka T, Hobo T (2005) An integrated microfluidic device in polyester for electrophoretic analysis of amino acids. Electrophoresis 26(9):1843–1848

    Google Scholar 

  • Gustafsson O, Mogensen KB, Kutter JP (2008) Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography. Electrophoresis 29(15):3145–3152

    Google Scholar 

  • Hansen M, Nilsson D, Johansen DM, Balslev S, Kristensen A (2005) A nanoimprinted polymer lab-on-a-chip with integrated optics. Conference on advancements in polymer optics design, fabrication and materials in San Diego, USA, SPIE Symposium on Optics and Photonics

  • Hawkins KR, Yager P (2003) Nonlinear decrease of background fluorescence in polymer thin-films: a survey of materials and how they can complicate fluorescence detection in μTAS. Lab Chip 3(4):248–252

    Google Scholar 

  • Huang WJ, Chang FC, Chu PPJ (2000) Functionalization and chemical modification of cyclo olefin copolymers (COC). Polymer 41(16):6095–6101

    Google Scholar 

  • Hurth C, Lenigk R, Zenhausern F (2008) A compact LED-based module for DNA capillary electrophoresis. Appl Phys B 93(2–3):693–699

    Google Scholar 

  • Hwang SJ, Yu HH (2005) Novel cyclo olefin copolymer used as waveguide film. Jpn J Appl Phys 44(4B):2541–2545

    Google Scholar 

  • Hwang SJ, Tseng MC, Shu JR, Yu HH (2008) Surface modification of cyclic olefin copolymer substrate by oxygen plasma treatment. Surf Coating Tech 202(15):3669–3674

    Google Scholar 

  • Illa X, De Malsche W, Bomer J, Gardeniers H, Eijkel J, Morante JR, Romano-Rodriguez A, Desmet G (2009) An array of ordered pillars with retentive properties for pressure-driven liquid chromatography fabricated directly from an unmodified cyclo olefin polymer. Lab Chip 9(11):1511–1516

    Google Scholar 

  • Ito H, Kazama K, Kikutani T (2007) Effects of process conditions on surface replication and higher-order structure formation in micromolding. Macromol Symp 249–250(1):628–634

    Google Scholar 

  • Jang WI, Chung KH, Pyo HB, Park SH (2006) Self-operated blood plasma separation using micropump in polymer-based microfluidic device. Proc SPIE 6415:641512

    Google Scholar 

  • Japan Synthetic Rubber (2009) Available at http://www.jsr.co.jp/jsr_e/pd/arton/at01.html. Accessed April 2009

  • Johansson BL, Larsson A, Ocklind A, Ohrlund A (2002) Characterization of air plasma-treated polymer surfaces by ESCA and contact angle measurements for optimization of surface stability and cell growth. J Appl Polymer Sci 86(10):2618–2625

    Google Scholar 

  • Johnson TJ, Waddell EA, Kramer GW, Locascio LE (2001) Chemical mapping of hot-embossed and UV-laser- ablated microchannels in poly(methyl methacrylate) using carboxylate specific fluorescent probes. Appl Surf Sci 181(1–2):149–159

    Google Scholar 

  • Kalima V, Pietarinen J, Siitonen S, Immonen J, Suvanto M, Kuittinen M, Monkkonen K, Pakkanen TT (2007) Transparent thermoplastics: replication of diffractive optical elements using micro-injection molding. Opt Mater 30(2):285–291

    Google Scholar 

  • Kameoka J, Craighead HG, Zhang HW, Henion J (2001) A polymeric microfluidic chip for CE/MS determination of small molecules. Anal Chem 73(9):1935–1941

    Google Scholar 

  • Kameoka J, Orth R, Ilic B, Czaplewski D, Wachs T, Craighead HG (2002) An electrospray ionization source for integration with microfluidics. Anal Chem 74(22):5897–5901

    Google Scholar 

  • Kee JS, Poenar DP, Neuzil P, Yobas L (2008) Monolithic integration of poly(dimethylsiloxane) waveguides and microfluidics for on-chip absorbance measurements. Sens Actuat B 134(2):532–538

    Google Scholar 

  • Kettner P, Pelzer RL, Glinsner T, Farrens S, Lee D (2006) New results on plasma activated bonding of imprinted polymer features for bio MEMS applications. J Phys 34:65–71

    Google Scholar 

  • Khanarian G, Celanese H (2001) Optical properties of cyclic olefin copolymers. Opt Eng 40(6):1024–1029

    Google Scholar 

  • Kim DS, Lee SH, Ahn CH, Lee JY, Kwon TH (2006) Disposable integrated microfluidic biochip for blood typing by plastic microinjection moulding. Lab Chip 6(6):794–802

    Google Scholar 

  • Lamonte RR, McNally D (2001) Cyclic olefin copolymers. Adv Mater Process 159:33–36

    Google Scholar 

  • Larsen AV, Poulsen L, Birgens H, Dufva M, Kristensen A (2008) Pinched flow fractionation devices for detection of single nucleotide polymorphisms. Lab Chip 8(5):818–821

    Google Scholar 

  • Lee DS, Yang H, Chung KH, Pyo HB (2005) Wafer-scale fabrication of polymer-based microdevices via injection molding and photolithographic micropatterning protocols. Anal Chem 77(16):5414–5420

    Google Scholar 

  • Li C, Yang YN, Craighead HG, Lee KH (2005) Isoelectric focusing in cyclic olefin copolymer microfluidic channels coated by polyacrylamide using a UV photografting method. Electrophoresis 26(9):1800–1806

    Google Scholar 

  • Liu J, Ro KW, Nayak R, Knapp DR (2007) Monolithic column plastic microfluidic device for peptide analysis using electrospray from a channel opening on the edge of the device. Int J Mass Spectrom 259(1–3):65–72

    Google Scholar 

  • Mair DA, Geiger E, Pisano AP, Frechet JMJ, Svec F (2006) Injection molded microfluidic chips featuring integrated interconnects. Lab Chip 6(10):1346–1354

    Google Scholar 

  • Mair DA, Rolandi M, Snauko M, Noroski R, Svec F, Frechet JMJ (2007) Room-temperature bonding for plastic high-pressure microfluidic chips. Anal Chem 79(13):5097–5102

    Google Scholar 

  • Malek CGK (2006) Laser processing for bio-microfluidics applications (part I). Anal Bioanal Chem 385(8):1351–1361

    Google Scholar 

  • McCormick RM, Nelson RJ, Alonso-Amigo MG, Benvegnu J, Hooper HH (1997) Microchannel electrophoretic separations of DNA in injection-molded plastic substrates. Anal Chem 69(14):2626–2630

    Google Scholar 

  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21(1):27–40

    Google Scholar 

  • Mela P, van den Berg A, Fintschenko Y, Cummings EB, Simmons BA, Kirby BJ (2005) The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis 26(9):1792–1799

    Google Scholar 

  • Microchem (2009) Available at http://www.microchem.com/products/su_eight.htm. Accessed April 2009

  • Microfluidic ChipShop (2009) Available at http://www.microfluidic-chipshop.com. Accessed June 2009

  • Mitsui Chemicals America (2009) Available at http://www.mitsuichemicals.com/apel.htm. Accessed April 2009

  • Mogensen KB, Petersen NJ, Hubner J, Kutter JP (2001) Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices. Electrophoresis 22(18):3930–3938

    Google Scholar 

  • Mogensen KB, El-Ali J, Wolff A, Kutter JP (2003) Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems. Appl Optic 42(19):4072–4079

    Google Scholar 

  • Monkkonen K, Lautanen J, Kettunen V, Leppanen VP, Pakkanen TT, Jaaskelainen T (2000) Replication of an antireflecting element in COC plastics using a hot embossing technique. J Mater Chem 10(12):2634–2636

    Google Scholar 

  • Monkkonen K, Hietala J, Paakkonen P, Paakkonen EJ, Kaikuranta T, Pakkanen TT, Jaaskelainen T (2002) Replication of sub-micron features using amorphous thermoplastics. Polym Eng Sci 42(7):1600–1608

    Google Scholar 

  • Mosaddegh P, Angstadt DC (2008) Micron and sub-micron feature replication of amorphous polymers at elevated mold temperature without externally applied pressure. J Micromech Microeng 18(3):035036

    Google Scholar 

  • Nielsen T, Nilsson D, Bundgaard F, Shi P, Szabo P, Geschke O, Kristensen A (2004) Nanoimprint lithography in the cyclic olefin copolymer, Topas((R)), a highly ultraviolet-transparent and chemically resistant thermoplast. J Vac Sci Technol B 22(4):1770–1775

    Google Scholar 

  • Nikolova D, Dayss E, Leps G, Wutzler A (2004) Surface modification of cycloolefinic copolymers for optimization of the adhesion to metals. Surf Interface Anal 36(8):689–693

    Google Scholar 

  • Nilsson D, Balslev S, Kristensen A (2005) A microfluidic dye laser fabricated by nanoimprint lithography in a highly transparent and chemically resistant cyclo-olefin copolymer (COC). J Micromech Microeng 15(2):296–300

    Google Scholar 

  • Okagbare PI, Emory JM, Datta P, Goettert J, Soper SA (2010) Fabrication of a cyclic olefin copolymer planar waveguide embedded in a multi-channel poly(methyl methacrylate) fluidic chip for evanescence excitation. Lab Chip 10:66–73

    Google Scholar 

  • Park SM, Lee KH, Craighead HG (2008a) On-chip coupling of electrochemical pumps and an SU-8 tip for electrospray ionization mass spectrometry. Biomed Microdevices 10(6):891–897

    Google Scholar 

  • Park SW, Lee JH, Yoon HC, Kim BW, Sim SJ, Chae H, Yang SS (2008b) Fabrication and testing of a PDMS multi-stacked hand-operated LOC for use in portable immunosensing systems. Biomed Microdevices 10(6):859–868

    Google Scholar 

  • Paul D, Pallandre A, Miserere S, Weber J, Viovy JL (2007) Lamination-based rapid prototyping of microfluidic devices using flexible thermoplastic substrates. Electrophoresis 28(7):1115–1122

    Google Scholar 

  • Pfleging W, Baldus O (2006) Laser patterning and welding of transparent polymers for microfluidic device fabrication. Proc SPIE 6107:610705

    Google Scholar 

  • Piruska A, Nikcevic I, Lee SH, Ahn C, Heineman WR, Limbach PA, Seliskar CJ (2005) The autofluorescence of plastic materials and chips measured under laser irradiation. Lab Chip 5(12):1348–1354

    Google Scholar 

  • Pu QS, Elazazy MS, Alvarez JC (2008) Label-free detection of heparin, streptavidin, and other probes by pulsed streaming potentials in plastic microfluidic channels. Anal Chem 80(17):6532–6536

    Google Scholar 

  • Ro KW, Liu H, Knapp DR (2006) Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. J Chrom 1111(1):40–47

    Google Scholar 

  • Rotting O, Ropke W, Becker H, Gartner C (2002) Polymer microfabrication technologies. Microsyst Technol 8(1):32–36

    Google Scholar 

  • Sabbert D, Landsiedel J, Bauer HD, Ehrfeld W (1999) ArF-excimer laser ablation experiments on cycloolefin copolymer (COC). Appl Surf Sci 150(1–4):185–189

    Google Scholar 

  • Shin JY, Park JY, Liu CY, He JS, Kim SC (2005) Chemical structure and physical properties of cyclic olefin copolymers—(IUPAC technical report). Pure Appl Chem 77(5):801–814

    Google Scholar 

  • Shinohara H, Suzuki T, Kitagawa F, Mizuno J, Otsuka K, Shoji S (2008) Polymer microchip integrated with nano-electrospray tip for electrophoresis-mass spectrometry. Sens Actuat B 132(2):368–373

    Google Scholar 

  • Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576

    Google Scholar 

  • Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T (2007) Fully microfabricated and integrated SU-8-based capillary electrophoresis-electrospray ionization microchips for mass spectrometry. Anal Chem 79(23):9135–9144

    Google Scholar 

  • Stachowiak TB, Rohr T, Hilder EF, Peterson DS, Yi MQ, Svec F, Frechet JMJ (2003) Fabrication of porous polymer monoliths covalently attached to the walls of channels in plastic microdevices. Electrophoresis 24(21):3689–3693

    Google Scholar 

  • Stachowiak TB, Mair DA, Holden TG, Lee LJ, Svec F, Frechet JMJ (2007) Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Separ Sci 30(7):1088–1093

    Google Scholar 

  • Steffen H, Schröder K, Busse B, Ohl A, Weltmann K (2007) Functionalization of COC surfaces by Microwave Plasmas. Plasma Process Polymer 4:S392–S396

    Google Scholar 

  • Steigert J, Haeberle S, Brenner T, Muller C, Steinert CP, Koltay P, Gottschlich N, Reinecke H, Ruhe J, Zengerle R, Ducree J (2007) Rapid prototyping of microfluidic chips in COC. J Micromech Microeng 17(2):333–341

    Google Scholar 

  • Sueyoshi K, Kitagawa F, Otsuka K (2008) Recent progress of online sample preconcentration techniques in microchip electrophoresis. J Separ Sci 31(14):2650–2666

    Google Scholar 

  • Tan HY, Loke WK, Tan YT, Nguyen NT (2008) A lab-on-a-chip for detection of nerve agent sarin in blood. Lab Chip 8(6):885–891

    Google Scholar 

  • Toft KN, Vestergaard B, Nielsen SS, Snakenborg D, Jeppesen MG, Jacobsen JK, Arleth L, Kutter JP (2008) High-throughput Small Angle X-ray Scattering from proteins in solution using a microfluidic front-end. Anal Chem 80(10):3648–3654

    Google Scholar 

  • Topas Advanced Polymers (2009) Available at http://www.topas.com/products-topas_coc. Accessed April 2009

  • Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16

    Google Scholar 

  • Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505

    Google Scholar 

  • Tsao CW, Liu J, Devoe DL (2008) Droplet formation from hydrodynamically coupled capillaries for parallel microfluidic contact spotting. J Micromech Microeng 18(2):7

    Google Scholar 

  • Wallow TI, Morales AM, Simmons BA, Hunter MC, Krafcik KL, Domeier LA, Sickafoose SM, Patel KD, Gardea A (2007) Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab Chip 7(12):1825–1831

    Google Scholar 

  • Wang YX, Zhou Y, Balgley BM, Cooper JW, Lee CS, DeVoe DL (2005) Electrospray interfacing of polymer microfluidics to MALDI-MS. Electrophoresis 26(19):3631–3640

    Google Scholar 

  • Wang YR, Chen HW, He QH, Soper SA (2008) A high-performance polycarbonate electrophoresis microchip with integrated three-electrode system for end-channel amperometric detection. Electrophoresis 29(9):1881–1888

    Google Scholar 

  • Yang YN, Kameoka J, Wachs T, Henion JD, Craighead HG (2004) Quantitative mass spectrometric determination of methylphenidate concentration in urine using an electrospray ionization source integrated with a polymer microchip. Anal Chem 76(9):2568–2574

    Google Scholar 

  • Yang YN, Li C, Kameoka J, Lee KH, Craighead HG (2005a) A polymeric microchip with integrated tips and in situ polymerized monolith for electrospray mass spectrometry. Lab Chip 5(8):869–876

    Google Scholar 

  • Yang YN, Li C, Lee KH, Craighead HG (2005b) Coupling on-chip solid-phase extraction to electrospray mass spectrometry through an integrated electrospray tip. Electrophoresis 26(19):3622–3630

    Google Scholar 

  • Yi L, Wang XD, Fan Y (2008) Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. J Mater Process Tech 208(1–3):63–69

    Google Scholar 

  • Yoo YE, Kim TH, Choi DS, Lee HJ, Choi J, Kim SK (2009) Study on molding of a nanostructured plastic plate and its surface properties. Jpn J Appl Phys 48(6):06HF07

    Google Scholar 

  • Zeon Chemicals (2009) Available at http://www.zeonex.com/default.asp. Accessed April 2009

  • Zhang J, Das C, Fan ZH (2008) Dynamic coating for protein separation in cyclic olefin copolymer microfluidic devices. Microfluid Nanofluid 5(3):327–335

    Google Scholar 

Download references

Acknowledgements

This study was partially supported by the Danish Research Council (FTP grant #274-06-0193) and by the NeuroTAS project, financially supported by the European Commission through the Sixth Framework Programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro S. Nunes.

Additional information

Pedro S. Nunes, Pelle D. Ohlsson, and Olga Ordeig have equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, P.S., Ohlsson, P.D., Ordeig, O. et al. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications. Microfluid Nanofluid 9, 145–161 (2010). https://doi.org/10.1007/s10404-010-0605-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0605-4

Keywords

Navigation