Skip to main content
Log in

An integrated microfluidic system for the determination of microalbuminuria by measuring the albumin-to-creatinine ratio

  • Original Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This study presents an integrated microfluidic system for the determination of microalbuminuria (MAU) through the measurements of the albumin-to-creatinine ratios in patients’ urinary samples. Albumin concentrations are determined based on a non-immunological dye binding assay in which the dyes react specifically with albumin to undergo a strong fluorescence enhancement. Creatinine concentrations are determined based on the Jaffé reaction in which the reagents react specifically with creatinine to form orange–red colored complexes. Two calibration curves for determining the concentrations of urinary albumin and creatinine are constructed with assay ranges of 5–220 and 1–100 mg/l, respectively. Using this system to determine the ACRs of collected clinical urine samples, statistical tools including Bland–Altman bias plot and Passing–Bablok regression analysis show that the results obtained by the proposed microfluidic system are in good agreement with those obtained by conventional methods. This simple, automatic, inexpensive, and microchip-based platform demonstrates a promising alternative to the conventional assays for determining MAU and may be suited for clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AB:

Albumin blue

ACR:

Albumin-to-creatinine ratio

AER:

Albumin excretion rate

BioFET:

Biological field-effect transistor

BUN:

Blood urea nitrogen

CI:

Confidence interval

CNC:

Computer-numerical-controlled

CVs:

Coefficients of variation

DS:

Dextran sulfate

EMVs:

Electromagnetic valves

GFR:

Glomerular filtration rate

HCl:

Hydrogen chloride

HSA:

Human serum albumin

LC–MS/MS:

Liquid chromatography tandem mass spectrometry

LOC:

Lab-on-a-chip

MAU:

Microalbuminuria

NaOH:

Sodium hydroxide

NCVs:

Normally closed valves

PB:

Polybrene

PDMS:

Poly(dimethylsiloxane)

PMMA:

Polymethylmethacrylate

SAM:

Self-assembled monolayer

SD:

Standard deviation

μTAS:

Micro-total-analysis-system

References

  • Bakris GL (2001) Microalbuminuria: What is it? Why is it important? What should be done about it? J Clin Hypertens 3:99–102

    Article  Google Scholar 

  • Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160

    Article  Google Scholar 

  • Bryson C, Dalrymple L (2006) Albumin to creatinine ratio in 2 random urine samples was an accurate screening test for albuminuria in diabetic pregnancies. Evid Based Med 11:154

    Article  Google Scholar 

  • Carling RS, Hogg SL (2008) Simultaneous determination of guanidinoacetate, creatine and creatinine in urine and plasma by un-derivatized liquid chromatography-tandem mass spectrometry. Ann Clin Biochem 45:575–584

    Article  Google Scholar 

  • Chan OTM, Herold DA (2006) Chip electrophoresis as a method for quantifying total microalbuminuria. Clin Chem 52:2141–2146

    Article  Google Scholar 

  • Chase HP, Marshall G, Garg SK, Harris S, Osberg I (1991) Borderline increases in albumin excretion rate and the relation to glycemic control in subjects with type I diabetes. Clin Chem 37:2048–2052

    Google Scholar 

  • Eshøj O, Feldt-Rasmussen B, Larsen ML, Mogensen EF (1987) Comparison of overnight, morning and 24-hour urine collections in the assessment of diabetic microalbuminuria. Diabet Med 4:531–533

    Article  Google Scholar 

  • Fung KK, Chan CPY, Renneberg R (2009) Development of a creatinine enzyme-based bar-code-style lateral-flow assay. Anal Bioanal Chem 393:1281–1287

    Article  Google Scholar 

  • Hofmann O, Wang X, deMello JC, Bradley DDC, deMello AJ (2005) Towards microalbuminuria determination on a disposable diagnostic microchip with integrated fluorescence detection based on thin-film organic light emitting diodes. Lab Chip 5:863–868

    Article  Google Scholar 

  • Husdan H, Rapoport A (1968) Estimation of creatinine by the Jaffe reaction: a comparison of three methods. Clin Chem 14:222–238

    Google Scholar 

  • Justesen TI, Petersen JLA, Ekbom P, Damm P, Mathiesen ER (2006) Albumin-to-creatinine ratio in random urine samples might replace 24-h urine collections in screening for micro- and macroalbuminuria in pregnant woman with type 1 diabetes. Diabetes Care 29:924–925

    Article  Google Scholar 

  • Kamholz AEB, Weigl BH, Finlayson BA, Yager P (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal Chem 71:5340–5347

    Article  Google Scholar 

  • Kessler MA, Wolfbeis OS (1992) Laser-induced fluorescence determination of albumin using longwave absorbing molecular probes. Anal Biochem 200:254–259

    Article  Google Scholar 

  • Kessler MA, Meinitzer A, Petek W, Wolfbeis OS (1997a) Microalbuminuria and borderline-increased albumin excretion determined with a centrifugal analyzer and the Albumin Blue 580 fluorescence assay. Clin Chem 43:996–1002

    Google Scholar 

  • Kessler MA, Meinitzer A, Wolfbeis OS (1997b) Albumin Blue 580 fluorescence assay for albumin. Anal Biochem 248:180–182

    Article  Google Scholar 

  • Kuo CH, Wang JH, Lee GB (2009) A microfabricated CE chip for DNA pre-concentration and separation utilizing a normally closed valve. Electrophoresis 30:3228–3235

    Article  Google Scholar 

  • Lee HL, Chen SC (2004) Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum. Talanta 64:750–757

    Article  Google Scholar 

  • Levey AS, Greene T, Kusek JW, Beck GL (2000) A simplified equation to predict glomerular filtration rate from serum creatinine (Abstr). J Am Soc Nephrol 11:155A

    Google Scholar 

  • Liao CS, Lee GB, Wu JJ, Chang CC, Hsieh TM, Huang FC, Luo CH (2005) Micromachined polymerase chain reaction system for multiple DNA amplification of upper respiratory tract infectious diseases. Biosens Bioelectron 20:1341–1348

    Article  Google Scholar 

  • Lin CH, Tsai CH, Fu LM (2005) A rapid three-dimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions. J Micromech Microeng 15:935–943

    Article  Google Scholar 

  • Lin CC, Hsu JL, Lee GB (2010a) Sample preconcentration in microfluidic devices. Microfluid Nanofluid. doi:10.1007/s1040401006619

  • Lin CC, Tseng CC, Lee GB (2010b) An integrated microfluidic chip for non-immunological determination of urinary albumin. Biomed Microdevices 12:887–896

    Article  Google Scholar 

  • Lustgarten JA, Wenk RE (1972) Simple, rapid, kinetic method for serum creatinine measurement. Clin Chem 18:1419–1422

    Google Scholar 

  • Lvova LE, Martinelli E, Dini E, Bergamini A, Paolesse R, Di NC, D’Amico A (2009) Clinical analysis of human urine by means of potentiometric Electronic tongue. Talanta 77:1097–1104

    Article  Google Scholar 

  • Lydakis C, Lip G (1998) Microalbuminuria and cardiovascular risk. QJM 91:381–391

    Article  Google Scholar 

  • Mangili R, Deferrari G, Mario U, Giampietro O, Navalesi R, Nosadini R, Rigamonti G, Crepaldi G (1992) Prevalence of hypertension and microalbuminuria in adult type 1 (insulin-dependent) diabetic patients without renal failure in Italy. I. Validation of screening techniques to detect microalbuminuria. Acta Diabetol 29:156–166

    Article  Google Scholar 

  • Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensor Actuat B 1:244–248

    Article  Google Scholar 

  • Meagher RJ, Hatch AV, Renzi RF, Singh AK (2008) An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8:2046–2053

    Article  Google Scholar 

  • Mogensen CE (1987) Microalbuminuria as a predictor of clinical diabetic nephropathy. Kidney Int 31:673–689

    Article  Google Scholar 

  • Mosca A, Paleari R, Ceriotti F, Lapolla A, Fedele D (2005) Biological variability of albumin excretion rate and albumin-to-creatinine ratio in hypertensive type 2 diabetic Patients. Clin Chem Lab Med 41:1229–1233

    Article  Google Scholar 

  • Narayanan S, Appleton H (1980) Creatinine: a review. Clin Chem 26:1119–1126

    Google Scholar 

  • Owen LJ, Wear JE, Keevil BG (2006) Validation of a liquid chromatography tandem mass spectrometry assay for serum creatinine and comparison with enzymatic and Jaffe methods. Ann Clin Biochem 43:118–123

    Article  Google Scholar 

  • Park KM, Lee SK, Sohn YS, Choi SY (2008) BioFET sensor for detection of albumin in urine. Electron Lett 44:185–186

    Article  Google Scholar 

  • Passing H, Bablok W (1983) New biometrical procedures for testing the equality of measurements from two different analytical methods. J Clin Chem Clin Biochem 21:709–720

    Google Scholar 

  • Pugia MJ, Lott JA, Wallace JF, Cast TK, Bierbaum LD (2000) Assay of creatinine using the peroxidase activity of copper-creatinine complexes. Clin Biochem 33:63–70

    Article  Google Scholar 

  • Radomska A, Bodenszac E, Gła BS, Koncki R (2004) Creatinine biosensor based on ammonium ion selective electrode and its application in flow-injection analysis. Talanta 64:603–608

    Article  Google Scholar 

  • Rodríguez JJ, Berzas J, Castañeda G, Mora N, Rodríguez MJ (2004) Very fast and direct capillary zone electrophoresis method for the determination of creatinine and creatine in human urine. Anal Chim Acta 521:53–59

    Article  Google Scholar 

  • Rowe DJF, Dawnay A, Watts GF (1990) Microalbuminuria in diabetes mellitus: review and recommendation for the measurement of albumin in urine. Ann Clin Biochem 27:297–312

    Google Scholar 

  • Sakai T, Ohta H, Ohno N, Imai J (1995) Routine assay of creatinine in newborn baby urine by spectrophotometric flow-injection analysis. Anal Chim Acta 308:446–450

    Article  Google Scholar 

  • Songjaroen T, Maturos T, Sappat A, Tuantranont A, Laiwattanapaisal W (2009) Portable microfluidic system for determination of urinary creatinine. Anal Chim Acta 647:78–83

    Article  Google Scholar 

  • Staden RISV, Bokretsion RG, van Staden JF, Aboul-Enein HY (2006) Simultaneous detection of creatine and creatinine using a sequential injection analysis/biosensor system. Prep Biochem Biotechnol 36:287–296

    Article  Google Scholar 

  • Viberti GC, Pickup JC, Phil D, Jarrett RJ, Keen H (1979) Effect of control of blood glucose on urinary excretion of albumin and β2 microglobulin in insulin-dependent diabetes. New Engl J Med 300:638–641

    Article  Google Scholar 

  • Vigstrup J, Mogensen CE (1985) Proliferative diabetic retinopathy: at risk patients identified by early detection of microalbuminuria. Acta Ophthalmol 63:530–534

    Google Scholar 

  • Waller K, Ward K, Mahan JD, Wismatt DK (1989) Current concepts in proteinuria. Clin Chem 35:755–765

    Google Scholar 

  • Weber JA, van Zanten AP (1991) Interferences in current methods for measurements of creatinine. Clin Chem 37:695–700

    Google Scholar 

  • Yang YN, Hsiung SK, Lee GB (2009a) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid 6:823–833

    Article  Google Scholar 

  • Yang SY, Lin JL, Lee GB (2009b) A vortex-type micromixer utilizing pneumatically driven membranes. J Micromech Microeng 19:035020–0350208

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this study by the National Science Council (NSC 99-2218-E-006-236; NSC 99-2120-M-006-008) and the Department of Health (DOH 99-TD-B-111-102) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chin-Chung Tseng or Gwo-Bin Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CC., Hsu, JL., Tseng, CC. et al. An integrated microfluidic system for the determination of microalbuminuria by measuring the albumin-to-creatinine ratio. Microfluid Nanofluid 10, 1055–1067 (2011). https://doi.org/10.1007/s10404-010-0734-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0734-9

Keywords

Navigation