Skip to main content
Log in

Turbulent mass transfer of Al2O3 and TiO2 electrolyte nanofluids in circular tube

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Experimental study was performed to investigate turbulent mass transfer in straight circular tube. Electrochemical limiting diffusion current technique was used to measure the mass transfer coefficient in fully developed hydrodynamics and under developed mass transfer region. TiO2 and γ-Al2O3 nanoparticles were added into the electrolyte solution (ES) to make electrolyte nanofluids (ENF). Measurements revealed that enhancement in mass transfer reaches 10 % in a 0.01 vol% γ-Al2O3/electrolyte nanofluid while 18 % in a 0.015 vol% TiO2/electrolyte nanofluid relative to the base ES. Mass transfer coefficients increased with nanoparticles concentration up to an optimum concentration (0.01 % in γ-Al2O3/electrolyte nanofluid and 0.015 % in TiO2/electrolyte nanofluid) while decreased by increasing nanoparticles concentration further. Enhancement ratio which is the ratio of the mass transfer coefficient of nanofluid to that of the base fluid was a function of nanoparticle concentration and was independent of Reynolds number. The mechanisms of nanoparticles Brownian motion and nanoparticles clustering were used to describe the behavior of the enhancement ratio in ENF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bahmanyar A, Khoobi N, Mozdianfard MR, Bahmanyar H (2011) The influence of nanoparticles on hydrodynamic characteristics and mass transfer performance in a pulsed liquid–liquid extraction column. Chem Eng Process 50:1198–1206

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications, 2nd edn. Wiley, USA

    Google Scholar 

  • Beiki H, Nasr Esfahany M, Etesami N (2013) Laminar forced convective mass transfer of γ-Al2O3/electrolyte nanofluid in a circular tube. Int J Therm Sci 64:251–256

    Google Scholar 

  • Berger FP, Ziai A (1983) Optimisation of experimental conditions for electrochemical mass transfer measurements. Chem Eng Res Des 61:377–382

    Google Scholar 

  • Caprani A, de Ficquelmont-Loizos MM, Tamisier L, Peronneau P (1988) Mass transfer in laminar flow at a rotating disk electrode in suspensions of inert particles. J Electrochem Soc 135:635–642

    Article  Google Scholar 

  • de Ficquelmont-Loizos MM, Tamisier L, Caprani A (1988) Mass transfer in laminar flow at a rotating disk electrode in suspensions of inert particles. J Electrochem Soc 135:626–634

    Article  Google Scholar 

  • Fang X, Xuan Y, Li Q (2009) Experimental investigation on enhanced mass transfer in nanofluids. Appl Phys Lett 95(20), art no 203108

    Google Scholar 

  • Feng X, Johnson DW (2012) Mass transfer in SiO2 nanofluids: a case against purported nanoparticle convection effects. Int J Heat Mass Transf 55:3447–3453

    Article  Google Scholar 

  • Fotukian SM, Nasr Esfahany M (2010a) Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube. Int Commun Heat Mass Transf 37:214–219

    Article  Google Scholar 

  • Fotukian SM, Nasr Esfahany M (2010b) Experimental investigation of turbulent convective heat transfer of dilute γ-Al2O3/water nanofluid inside a circular tube. Int J Heat Fluid Flow 31:606–612

    Article  Google Scholar 

  • Gerardi C, Cory D, Buongiorno J, Hu L-W, McKrell T (2009) Nuclear magnetic resonance-based study of ordered layering on the surface of alumina nanoparticles in water. Appl Phys Lett 95:253104

    Article  Google Scholar 

  • Goel M, Roy SK, Sengupta S (1994) Laminar forced convection heat transfer in microcapsulated phase change material suspensions. Int J Heat Mass Transf 37:593–604

    Article  Google Scholar 

  • Heris SZ, Esfahany MN, Etemad G (2007) Numerical investigation of nanofluid laminar convective heat transfer through a circular tube. Numer Heat Transf Part A Appl 52:1043–1058

    Article  Google Scholar 

  • Holman JP (1989) Experimental methods for engineering, 5th edn. McGraw-Hill, New York

    Google Scholar 

  • Kakaç S, Pramuanjaroenkij A (2009) Review of convective heat transfer enhancement with nanofluids. Int J Heat Mass Transf 52:3187–3196

    Article  MATH  Google Scholar 

  • Kang YT, Kim HJ, Lee KI (2008) Heat and mass transfer enhancement of binary nanofluids for H2O/LiBr falling film absorption process. Int J Refrig 31:850–856

    Article  Google Scholar 

  • Kim J-K, Jung JY, Kang YT (2006) The effect of nano-particles on the bubble absorption performance in a binary nanofluid. Int J Refrig 29:22–29

    Article  Google Scholar 

  • Kim H, Jeong J, Kang YT (2012) Heat and mass transfer enhancement for falling film absorption process by SiO2 binary nanofluids. Int J Refrig 35:645–651

    Article  Google Scholar 

  • Komati S, Suresh AK (2008) CO2 absorption into amine solutions: a novel strategy for intensification based on the addition of ferrofluids. J Chem Technol Biotechnol 83:1094–1100

    Article  Google Scholar 

  • Komati S, Suresh AK (2010) Anomalous enhancement of interphase transport rates by nanoparticles: effect of magnetic iron oxide on gas–liquid mass transfer. Ind Eng Chem Res 49:390–405

    Article  Google Scholar 

  • Krishnamurthy S, Bhattacharya P, Phelan PE, Prasher RS (2006) Enhanced mass transport in nanofluids. Nano Lett 6:419–423

    Article  Google Scholar 

  • Lee JK, Koo J, Hong H, Kang YT (2010) The effects of nanoparticles on absorption heat and mass transfer performance in NH3/H2O binary nanofluids. Int J Refrig 33:269–275

    Article  Google Scholar 

  • Lee JW, Jung JY, Lee SG, Kang YT (2011) CO2 bubble absorption enhancement in methanol-based nanofluids. Int J Refrig 34:1727–1733

    Article  Google Scholar 

  • Ma X, Su F, Chen J, Bai T, Han Z (2009) Enhancement of bubble absorption process using a CNTs-ammonia binary nanofluid. Int Commun Heat Mass Transf 36:657–660

    Article  Google Scholar 

  • Mizushina T (1971) The electrochemical method in transport phenomena. Adv Heat Transf 7:87–161

    Google Scholar 

  • Murshed SMS, Leong KC, Yang C (2005) Enhanced thermal conductivity of TiO2—water based nanofluids. Int J Therm Sci 44:367–373

    Article  Google Scholar 

  • Murshed SMS, Leong KC, Yang C, Nguyen NT (2008) Convective heat transfer characteristics of aqueous TiO2 nanofluid under laminar flow conditions. Int J Nanosci 7:325–331

    Article  Google Scholar 

  • Nagy E, Feczkó T, Koroknai B (2007) Enhancement of oxygen mass transfer rate in the presence of nanosized particles. Chem Eng Sci 62:7391–7398

    Article  Google Scholar 

  • Olle B, Bucak S, Holmes TC, Bromberg L, Hatton TA, Wang DIC (2006a) Enhancement of oxygen mass transfer using functionalized magnetic nanoparticles. Ind Eng Chem Res 45:4355–4363

    Article  Google Scholar 

  • Olle B, Bromberg L, Hatton TA, Wang DIC (2006) Enhancement of oxygen transfer in fermentation by use of functionalized magnetic nanoparticles. In: 2006 NSTI nanotechnology conference and trade show—NSTI Nanotech 2006 technical proceedings, pp 411–414

  • Ozturk S, Hassan YA, Ugaz VM (2010) Interfacial complexation explains anomalous diffusion in nanofluids. Nano Lett 10:665–671

    Article  Google Scholar 

  • Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf 11:151–170

    Article  Google Scholar 

  • Saien J, Bamdadi H (2012) Mass transfer from nanofluid single drops in liquid–liquid extraction process. Ind Eng Chem Res 51:5157–5166

    Article  Google Scholar 

  • Sara ON, Barlay Ergu O, Arzutug ME, YapIcI S (2009) Experimental study of laminar forced convective mass transfer and pressure drop in microtubes. Int J Therm Sci 48:1894–1900

    Article  Google Scholar 

  • Sara ON, İçer F, Yapici S, Sahin B (2011) Effect of suspended CuO nanoparticles on mass transfer to a rotating disc electrode. Exp Therm Fluid Sci 35:558–564

    Article  Google Scholar 

  • Saraç H, Patrick MA, Wragg AA (1993) Physical properties of the ternary electrolyte potassium ferri–ferrocyanide in aqueous sodium hydroxide solution in the range 10–90°C. J Appl Electrochem 23:51–55

    Article  Google Scholar 

  • Sedahmed GH, Ahmed AM (1989) Mass transfer in electrochemical reactors employing gas evolving mercury pool cathodes. Can J Chem Eng 67:942–947

    Article  Google Scholar 

  • Sedahmed GH, Soliman MN, El-Kholy NS (1981) Effect of surface roughness on the rate of mass transfer to a pipe wall in the mass transfer entry region. Can J Chem Eng 59:693–696

    Article  Google Scholar 

  • Sedahmed GH, Soliman MN, El-Kholy NS (1982) Effect of drag reducing polymers on the rate of mass transfer in relation to their use as corrosion inhibitors in pipelines under turbulent flow conditions. J Appl Electrochem 12:479–485

    Article  Google Scholar 

  • Sedahmed GH, Zahran RR, Hassan I (1993) Natural convection mass transfer at a fixed bed of cylinders. Ind Eng Chem Res 32:1235–1238

    Article  Google Scholar 

  • Shaw PV, Reiss LP, Hanratty TJ (1963) Rates of turbulent transfer to a pipe wall in the mass transfer entry region. AIChE J 9:362–364

    Article  Google Scholar 

  • Sonneveld PJ, Visscher W, Barendrecht E (1990) The influence of suspended particles on the mass transfer at a rotating disc electrode. Non-conducting particles. J Appl Electrochem 20:563–574

    Article  Google Scholar 

  • Subba-Rao V, Hoffmann PM, Mukhopadhyay A (2011) Tracer diffusion in nanofluids measured by fluorescence correlation spectroscopy. J Nanopart Res 13:6313–6319

    Article  Google Scholar 

  • Torres Pineda I, Lee JW, Jung I, Kang YT (2012) CO2 absorption enhancement by methanol-based Al2O3 and SiO2 nanofluids in a tray column absorber. Int J Refrig 35:1402–1409

    Article  Google Scholar 

  • Turanov AN, Tolmachev YV (2009) Heat- and mass-transport in aqueous silica nanofluids. Heat Mass Transf/Waerme- und Stoffuebertragung 45:1583–1588

    Article  Google Scholar 

  • Veilleux J, Coulombe S (2010) A total internal reflection fluorescence microscopy study of mass diffusion enhancement in water-based alumina nanofluids. J Appl Phys 108(10), art no 104316

    Google Scholar 

  • Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19

    Article  MATH  Google Scholar 

  • Xuan Y, Roetzel W (2000) Conceptions for heat transfer correlation of nanofluids. Int J Heat Mass Transf 43:3701–3707

    Article  MATH  Google Scholar 

  • Yang L, Du K, Niu XF, Cheng B, Jiang YF (2011a) Experimental study on enhancement of ammonia-water falling film absorption by adding nano-particles. Int J Refrig 34:640–647

    Article  Google Scholar 

  • Yang L, Du K, Cheng B, Li Y (2011b) The effect of viscosity on the heat and mass transfer of NH3/H2O falling film absorption with Fe2O3 nanofluid. Asia-Pacific Power and Energy Engineering Conference, APPEEC, art no 5748435

  • Zhu H, Shanks BH, Heindel TJ (2008) Enhancing CO—water mass transfer by functionalized MCM41 nanoparticles. Ind Eng Chem Res 47:7881–7887

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Nasr Esfahany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beiki, H., Esfahany, M.N. & Etesami, N. Turbulent mass transfer of Al2O3 and TiO2 electrolyte nanofluids in circular tube. Microfluid Nanofluid 15, 501–508 (2013). https://doi.org/10.1007/s10404-013-1167-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1167-z

Keywords

Navigation