Skip to main content
Log in

Electrokinetic flow in a pH-regulated, cylindrical nanochannel containing multiple ionic species

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Considering the wide applications of the electrokinetic flow regulated by pH, we model the flow of an electrolyte solution containing multiple ionic species in a charge-regulated cylindrical nanochannel. This extends previous analyses, where only two kinds of ionic species are usually considered, and a charged surface assumed to maintain at either constant potential or constant charge density, to a case closer to reality. Adopting a fused silica channel containing an aqueous NaCl background salt solution with its pH adjusted by HCl and NaOH as an example, we show that if the density of the functional groups on the channel surface increases (decreases), it approaches a constant potential (charge density) surface; if that density is low, the channel behavior is similar to that of a constant charge density channel at high salt concentration and large channel radius. Several interesting results are observed, for example, the volumetric flow rate of a small channel has a local maximum as salt concentration varies, which is not seen in a constant potential or charge density channel.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ai Y, Liu J, Zhang BK, Qian S (2010) Field effect regulation of DNA translocation through a nanopore. Anal Chem 82:8217–8225

    Article  Google Scholar 

  • Campbell LC, Wilkinson MJ, Manz A, Camilleri P, Humphreys CJ (2004) Electrophoretic manipulation of single DNA molecules in nanofabricated capillaries. Lab Chip 4:225–229

    Article  Google Scholar 

  • Cao QQ, Zuo CC, Li LJ, Ma YH, Li N (2010) Electroosmotic flow in a nanofluidic channel coated with neutral polymers. Microfluid Nanofluid 9:1051–1062

    Article  Google Scholar 

  • Chen Z, Ping Wang, Chang HC (2005) An electro-osmotic micro-pump based on monolithic silica for micro-flow analyses and electro-sprays. Anal Bioanal Chem 382:817–824

    Article  Google Scholar 

  • Chu HCW, Ng CO (2012) Electroosmotic flow through a circular tube with slip–stick striped wall. J Fluids Eng 134:111201

    Article  Google Scholar 

  • Daiguji H, Yang PD, Majumdar A (2004a) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Daiguji H, Yang PD, Szeri AJ, Majumdar A (2004b) Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett 4:2315–2321

    Article  Google Scholar 

  • Dolnik V (2004) Wall coating for capillary electrophoresis on microchips. Electrophoresis 25:3589–3601

    Article  Google Scholar 

  • Gasparac R, Kohli P, Mota MO, Trofin L, Martin CR (2004) Template synthesis of nano test tubes. Nano Lett 4:513–516

    Article  Google Scholar 

  • Hirst LS, Parker ER, Abu-Samah Z, Li Y, Pynn R, MacDonald NC, Safinya CR (2005) Microchannel systems in titanium and silicon for structural and mechanical studies of aligned protein self-assemblies. Langmuir 21:3910–3914

    Article  Google Scholar 

  • Hsu JP, Hung SH, Yu HY (2004a) Electrophoresis of a sphere at an arbitrary position in a spherical cavity filled with Carreau fluid. J Colloid Interface Sci 280:256–263

    Article  Google Scholar 

  • Hsu JP, Ku MH, Kao CY (2004b) Electrophoresis of a spherical particle along the axis of a cylindrical pore: effect of electroosmotic flow. J Colloid Interface Sci 276:248–254

    Article  Google Scholar 

  • Hu K, Bard AJ (1997) Characterization of adsorption of sodium dodecyl sulfate on charge-regulated substrates by atomic force microscopy force measurements. Langmuir 13:5418–5425

    Article  Google Scholar 

  • Karenga S, El Rassi Z (2010) A novel, neutral hydroxylated octadecyl acrylate monolith with fast electroosmotic flow velocity and its application to the separation of various solutes including peptides and proteins in the absence of electrostatic interactions. Electrophoresis 31:3192–3199

    Article  Google Scholar 

  • Karnik R, Castelino K, Fan R, Yang P, Majumdar A (2005) Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett 5:1638–1642

    Article  Google Scholar 

  • Kim SJ, Wang YC, Lee JH, Jang H, Han J (2007) Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel. Phys Rev Lett 99:044501

    Article  Google Scholar 

  • Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202

    Article  Google Scholar 

  • Krapf D, Wu MY, Smeets RMM, Zandbergen HW, Dekker C, Lemay SG (2006) Fabrication and characterization of nanopore-based electrodes with radii down to 2 nm. Nano Lett 6:105–109

    Article  Google Scholar 

  • Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometer length scales. Nature 412:166–169

    Article  Google Scholar 

  • Liu CC, Maciel GE (1996) The fumed silica surface: a study by NMR. J Am Chem Soc 118:5103–5119

    Article  Google Scholar 

  • Mao P, Han J (2005) Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5:837–844

    Article  Google Scholar 

  • Mei J, Xu JR, Xiao YX, Liao XY, Qiu GF, Feng YQ (2008) A novel covalent coupling method for coating of capillaries with liposomes in capillary electrophoresis. Electrophoresis 29:3825–3833

    Article  Google Scholar 

  • Nawrocki J (1997) The silanol group and its role in liquid chromatography. J Chromatogr A 779:29–71

    Article  Google Scholar 

  • Nischang I, Chen G, Tallarek U (2006) Electrohydrodynamics in hierarchically structured monolithic and particulate fixed beds. J Chromatogr A 1109:32–50

    Article  Google Scholar 

  • O’Brien RW, White LR (1978) Electrophoretic mobility of a spherical colloidal particle. J Chem Soc Faraday Trans 2 74:1607–1626

    Article  Google Scholar 

  • Ohshima H (1995) Electrophoresis of soft particles. Adv Colloid Interface Sci 62:189–235

    Article  Google Scholar 

  • Ohshima H (2006) Electrophoresis of soft particles: analytic approximations. Electrophoresis 27:526–533

    Article  Google Scholar 

  • Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 1. Theory. Anal Chem 77:6772–6781

    Article  Google Scholar 

  • Pu QS, Yun JS, Temkin H, Liu SR (2004) Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett 4:1099–1103

    Article  Google Scholar 

  • Qiao R, Aluru NR (2004) Charge inversion and flow reversal in a nanochannel electro-osmotic flow. Phys Rev Lett 92:198301

    Article  Google Scholar 

  • Qu WL, Li DQ (2000) A model for overlapped EDL fields. J Colloid Interface Sci 224:397–407

    Article  Google Scholar 

  • Schoch RB, Bertsch A, Renaud P (2006) pH-controlled diffusion of proteins with different pI values across a nanochannel on a chip. Nano Lett 6:543–547

    Article  Google Scholar 

  • Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  Google Scholar 

  • Tas N, Berenschot J, Mela P, Jansen H, Elwenspoek M, van den Berg A (2002) 2D-confined nanochannels fabricated by conventional micromachining. Nano Lett 2:1031–1032

    Article  Google Scholar 

  • Thompson AP (2003) Nonequilibrium molecular dynamics simulation of electro-osmotic flow in a charged nanopore. J Chem Phys 119:7503–7511

    Article  Google Scholar 

  • van der Heyden FHJ, Stein D, Dekker C (2005) Streaming currents in a single nanofluidic channel. Phys Rev Lett 95:116104

    Article  Google Scholar 

  • Wang M, Liu J, Chen S (2007) Electric potential distribution in nanoscale electroosmosis: from molecules to continuum. Mol Simul 33:1273–1277

    Google Scholar 

  • Wang XY, Wang SL, Gendhar B, Cheng C, Byun CK, Li GB, Zhao MP, Liu SR (2009) Electroosmotic pumps for microflow analysis. Trends Anal Chem 28:64–74

    Article  Google Scholar 

  • Wang M, Kang QJ, Ben-Naim E (2010) Modeling of electrokinetic transport in silica nanofluidic channels. Anal Chim Acta 664:158–164

    Article  Google Scholar 

  • White HS, Bund A (2008) Ion current rectification at nanopores in glass membranes. Langmuir 24:2212–2218

    Article  Google Scholar 

  • Yeh LH, Hsu JP, Qian S, Tseng SJ (2012a) Counterion condensation in pH-regulated polyelectrolytes. Electrochem Commun 19:97–100

    Article  Google Scholar 

  • Yeh LH, Xue S, Joo SW, Qian S, Hsu JP (2012b) Field effect regulation of surface charge property and EOF in nanofluidics. J Phys Chem C 116:4209–4216

    Article  Google Scholar 

  • Yuan Z, Garcia AL, Lopez GP, Petsev DN (2007) Electrokinetic transport and separations in fluidic nanochannels. Electrophoresis 28:595–610

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyh-Ping Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tseng, S., Tai, YH. & Hsu, JP. Electrokinetic flow in a pH-regulated, cylindrical nanochannel containing multiple ionic species. Microfluid Nanofluid 15, 847–857 (2013). https://doi.org/10.1007/s10404-013-1185-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1185-x

Keywords

Navigation