Skip to main content
Log in

Particle separation and sorting in microfluidic devices: a review

  • Review Article
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Separation and sorting of micron-sized particles has great importance in diagnostics, chemical and biological analyses, food and chemical processing and environmental assessment. By employing the unique characteristics of microscale flow phenomena, various techniques have been established for fast and accurate separation and sorting of microparticles in a continuous manner. The advancements in microfluidics enable sorting technologies that combine the benefits of continuous operation with small-sized scale suitable for manipulation and probing of individual particles or cells. Microfluidic sorting platforms require smaller sample volume, which has several benefits in terms of reduced cost of reagents, analysis time and less invasiveness to patients for sample extraction. Additionally, smaller size of device together with lower fabrication cost allows massive parallelization, which makes high-throughput sorting possible. Both passive and active separation and sorting techniques have been reported in literature. Passive techniques utilize the interaction between particles, flow field and the channel structure and do not require external fields. On the other hand, active techniques make use of external fields in various forms but offer better performance. This paper provides an extensive review of various passive and active separation techniques including basic theories and experimental details. The working principles are explained in detail, and performances of the devices are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50
Fig. 51
Fig. 52
Fig. 53
Fig. 54
Fig. 55
Fig. 56
Fig. 57
Fig. 58
Fig. 59
Fig. 60
Fig. 61
Fig. 62
Fig. 63
Fig. 64
Fig. 65
Fig. 66
Fig. 67
Fig. 68
Fig. 69
Fig. 70
Fig. 71
Fig. 72
Fig. 73
Fig. 74
Fig. 75
Fig. 76
Fig. 77
Fig. 78
Fig. 79
Fig. 80
Fig. 81
Fig. 82
Fig. 83
Fig. 84
Fig. 85

Similar content being viewed by others

References

  • Abkarian M, Viallat A (2005) Dynamics of vesicles in a wall-bounded shear flow. Biophys J 89:1055–1066

    Google Scholar 

  • Adams JD, Soh HT (2010) Tunable acoustophoretic band-pass particle sorter. Appl Phys Lett 97:064103

    Google Scholar 

  • Adams JD, Kim U, Soh HT (2008) Multi target magnetic activated cell sorter. Natl Acad Sci PNAS 105(47):18165–18170

    Google Scholar 

  • Adams JD, Thevoz P, Bruus H, Soh HT (2009) Integrated acoustic and magnetic separation in microfluidic channels. Appl Phys Lett 95:254103

    Google Scholar 

  • Alshareef M, Metrakos N, Perez EJ, Azer F, Yang F, Yang X, Wang G (2011) Separation of tumor cells with dielectrophoresis-based microfluidic chip, Southeast biomedical engineering career conference-Herndon, October 28, 2011

  • Aran K, Fok A, Sasso LA, Kamdar N, Gua Y, Su Q, Undar A, Zahn JD (2011) Microfiltration platform for continuous blood plasma protein extraction from whole blood during cardiac surgery. Lab Chip 11:2858–2868

    Google Scholar 

  • Arnold TJ, Hart SJ (2005) Enhanced optical chromatography in a PDMS microfluidic system. Opt Express 13(25):10406–104016

    Google Scholar 

  • Ashkin A (1997) Optical trapping and manipulation of neutral particles using lasers. Proc Natl Acad Sci USA 94:4853–4860

    Google Scholar 

  • Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Google Scholar 

  • Ashok PC, Marchington RF, Mthunzi P, Krauss TF, Dholakia K (2010) Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation. Opt Express 18(6):6396–6408

    Google Scholar 

  • Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87

    MATH  Google Scholar 

  • Balvin M, Sohn E, Iracki T, Drazer G, Frechette J (2009) Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices. Phys Rev Lett 103:078301

    Google Scholar 

  • Becker FF, Wang XB, Huang Y, Pethigt R, Vykoukal J, Gascoyne PRC (1995) Separation of human breast cancer cells from blood by differential dielectric affinity. Proc Natl Acad Sci 92:860–864

    Google Scholar 

  • Becker FF, Gascoyne PRC, Huang Y, Wang XB, Yang J (2001) Method and apparatus for fractionation using conventional dielectrophoresis and filed flow fractionation, WO 01/1487

  • Beech JP (2011) Micro fluidics separation and analysis of biological particles. PhD thesis, Lund University

  • Beech JP, Tegenfeldt JO (2008) Tunable separation in elastomeric micro fluidics devices. Lab Chip 8:657–659

    Google Scholar 

  • Beech JP, Jonsson P, Tegenfeldt JO (2009) Tipping the balance of deterministic lateral displacement devices using dielectrophoresis. Lab Chip 9(18):2698–2706

    Google Scholar 

  • Beech JB, Holm SH, Adolfsson K, Tegen-feldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12(6):1048–1051

    Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008a) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(101702):1–4

    Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008b) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8(11):1906–1914

    Google Scholar 

  • Bhagat AAS, Bow H, Hou HW, Tan SJ, Han J, Lim CT (2010) Microfluidics for cell separation. Med Biol Eng Compu 48:999–1014

    Google Scholar 

  • Bhardwaj P, Bagdi P, Sen AK (2011) Microfluidic device based on a micro-hydrocyclone for particle-liquid separation. Lab Chip 11(23):4012–4021

    Google Scholar 

  • Bowman T, Frechette J, Drazer G (2012) Force driven separation of drops by deterministic lateral displacement. Lab Chip 12:2903–2908

    Google Scholar 

  • Brody JP, Osborn TD, Forster FK, Yager P (1996) A planar microfabricated fluid filter. Sens Actuators A 54:704–708

    Google Scholar 

  • Brunet E, Degre G, Okkels F, Tabeling P (2005) Aggregation of paramagnetic particles in the presence of a hydrodynamic shear. J Colloid Interface Sci 282:58–68

    Google Scholar 

  • Bruus H (2009) Theoretical microfluidics. Oxford University Press, ISBN 9780199235094

  • Caldwell KD, Cheng ZQ, Hradecky P, Giddings JC (1984) Separation of human and animal cells by steric field-flow fractionation. Cell Biochem Biophys 6:233–251

    Google Scholar 

  • Carlo DD, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci 104(48):18892–18897

    Google Scholar 

  • Carlo DD, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles, using differential inertial focusing. Anal Chem 80:2204–2211

    Google Scholar 

  • Carlo DD, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9):094503–094504

    Google Scholar 

  • Chan P, Leal L (1979) The motion of a deformable drop in a second-order fluid. J Fluid Mech 92:131–170

    MATH  Google Scholar 

  • Chatterjee A (2011) Size-dependant separation of multiple particles in spiral microchannels, Phd thesis, University of Cincinnati

  • Chen X, Cui D, Liu C, Li H, Chen J (2007) Continuous Flow Microfluidic Device for Cell Separation, Cell Lysis and DNA Purification. Anal Chim Acta 84:2

    Google Scholar 

  • Chen X, Cui DF, Liu CC, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuators B Chem 130(1):216–221

    Google Scholar 

  • Cheng I-F, Froude VE, Zhu Y, Chang H-C (2009) A continuous high-throughput bio particle sorter based on 3D traveling-wave dielectrophoresis. Lab Chip 9:3193–3201

    Google Scholar 

  • Chronis N, Lam W, Lee L (2001) In: Ramsey JM, van den Berg A (eds) Micro total analysis system. Kluwer Academic, Monterey, p 497

  • Church C, Zhu J, Nieto J, Keten G, Ibarra E, Xuan X (2010) Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing. J Micromech Microeng 20:065011–065017

    Google Scholar 

  • Cranston HA, Boylan CW, Caroll GL, Sutera SP, Williamson JR, Gluzman IY, Krogstad DJ (1984) Plasmodium falciparum maturation abolishes physiologic red cell deformability. Science 223(4634):400–403

    Google Scholar 

  • Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929

    Google Scholar 

  • Cui L, Holmes D, Morgan H (1994) The dielectrophoretic levitation and separation of latex beads in microchips, 22(18), pp. 3893–3901, October 2001, J Phys D Appl Phys, 27, 1571–1574

  • Cummings EB, Singh AK (2003) Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental. Anal Chem 75:4724–4731

    Google Scholar 

  • Davis JA (2008) Micro fluidic separation of blood components through deterministic lateral displacement. PhD thesis, Princeton University

  • Davis JA, Inglis DW, Morton KJ, Lawrence DA, Huang LR, Chou SY, Stur JC, Austin RH (2006) Deterministic hydrodynamics: taking blood apart. PNAS 103(40):14779–14784

    Google Scholar 

  • Demierre N, Braschler T, Muller R, Renaud P (2008) Focusing and continuous separation of cells in an micro fluidic device using lateral dielectrophoresis. Sens Actuators B 132:388–396

    Google Scholar 

  • Devendra R, Drazer G (2012) Gravity driven deterministic lateral displacement for particle separation in micro fluidic devices. Anal Chem 84:10621–10627

    Google Scholar 

  • Dholakia K, Cizmar T (2011) Shaping the future of manipulation. Nat Photonics 5:335–342

    Google Scholar 

  • Dholakia K, Lee WM, Paterson L, MacDonald MP, McDonald R, Andreev I, Mthunzi P, Brown CTA, Marchington RF, Riches AC (2007) Optical separation of cells on potential energy landscapes: enhancement with dielectric tagging. IEEE J Sel Top Quantum Electron 13(6):1646–1654

    Google Scholar 

  • Ding X, Shi J, Lin S-CS, Yazdi S, Kiraly B, Huang TJ (2012) Tunable patterning of microparticles and cells using standing surface acoustic waves, The Royal Society of Chemistry, Lab chip

  • Doddabasavana GB, PadmaPriya K, Nagabhushana K (2012) A review of recent advances in separation and detection of whole blood components. World J Sci Technol 2(5):05–09

    Google Scholar 

  • Doddi SK, Bagchi P (2008) Lateral migration of a capsule in a plane Poiseuille flow in a channel. Int J Multiph Flow 34:966–986

    Google Scholar 

  • Doh II, Cho Y-H (2005) A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sens Actuators A121:59–65

    Google Scholar 

  • Dong Y, Skelley AM, Merdek KD, Sprott KM, Jiang C, Pierceall WE, Lin J, Stocum M, Carney WP, Smirnov DA (2013) Microfluidics and circulating tumor cells-review article. J Mol Diagn 15(2):149–157

    Google Scholar 

  • Dykes J, Lenshof A, Astrand-Grundstrom I-B, Laurell T, Scheding S (2011) Progenitor cell products using a novel micro-chip based acoustophoretic platform. PLoS ONE 6:8

    Google Scholar 

  • Evander M, Lenshof A, Laurell T, Nilsson J (2008) Acoustophoresis in wet-etched glass chips. Anal Chem 80:5178–5185

    Google Scholar 

  • Fahraeus R (1929) The suspension stability of the blood. Physiol Rev 2:241–274

    Google Scholar 

  • Faivre M, Abkarian M, Bickraj K, Stone HA (2005) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Lab Chip 5(7):778–784

    Google Scholar 

  • Faivre M, Abkarian M, Bickraj K, Stone HA (2006) Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. J Biorheol 43(2):147–159

    Google Scholar 

  • Frechette J, Drazer G (2009) Directional locking and deterministic separation in periodic arrays. J Fluid Mech 627:379–401

    MATH  Google Scholar 

  • Gagnon ZR (2011) Cellular dielectrophoresis: applications to the characterization, manipulation, separation and patterning of cell. Electrophoresis 32(18):2466–2487

    Google Scholar 

  • Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23(13):1973–1983

    Google Scholar 

  • Gascoyne PRC, Wang XB, Huang Y, Becker FF (1997) Dielectrophoretic separation of cancer cells from blood. IEEE Trans Ind Appl 33(3):670–678

    Google Scholar 

  • Geng Z, Zhang L, Ju Y, Wang W, Li Z (2011) A plasma separation device based on centrifugal effect and Zweifach-Fung effect. In: 15th international conference on miniaturized systems for chemistry and life sciences, Seattle, Washington, USA

  • Ghasemi M, Holm SH, Beech JP, Bjornmalm M, Tegenfeldt JO (2012) Separation of deformable hydrogel micro particles in deterministic lateral displacement devices. In: 16th International conference on miniaturized systems for chemistry and life sciences, Okinawa, Japan

  • Giddings JC (1973) The conceptual basis of field-flow fractionation. J Chem Educ 50:667–669

    Google Scholar 

  • Giddings JC (1983) Hyperlayer field-flow fractionation. Sep Sci Technol 18:765–773

    Google Scholar 

  • Gijs MAM (2004) Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid Nanofluid 1(1):22–40

    Google Scholar 

  • Gluckstad J (2004) Microfluidics: sorting particles with light. Nat Mater 3:9–10

    Google Scholar 

  • Gooneratne CP, Kosel J (2012) A micro-pillar array to trap magnetic beads in microfluidic systems. In: Sixth international conference on sensing technology (ICST)

  • Gossett DR, Carlo DD (2009a) Particle focusing mechanisms in curving confined flows. Anal Chem 81:8459–8465

    Google Scholar 

  • Gossett DR, Carlo DD (2009b) Particle focusing mechanisms in curving confined flows. Anal Chem 81(20):8459–8465

    Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Carlo DD (2010a) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267

    Google Scholar 

  • Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK, Lee W, Amini H, Carlo DD (2010b) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397(8):3249–3267

    Google Scholar 

  • Guldiken R, Jo MC, Gallant ND, Demirci U, Zhe J (2012) Sheathless size-based acoustic particle separation. Sensors 12:905–922

    Google Scholar 

  • Gupta S, Feke DL, Manas-Zloczower I (1995) Fractionation of mixed particulate solids according to compressibility using ultrasonic standing wave fields. Chem Eng Sci 50:3275–3284

    Google Scholar 

  • Hammarstrom B, Evander M, Barbeau H, Bruzelius M, Larsson J, Laurell T, Nilsson J (2010) Non-contact acoustic cell trapping in disposable glass capillaries. Lab Chip 10:2251–2257

    Google Scholar 

  • Han K, Frazier A (2005) Microfluidic system for continuous magnetophoresis separation of suspended cells using their native magnetic properties. Proc Nanotech pp 187–190

  • Han K-H, Han A, Frazier AB (2006) Microsystems for isolation and electrophysiological analysis of breast cancer cells from blood. Biosens Bioelectron 21:1907–1914

    Google Scholar 

  • Harris NR, Hill M, Beeby S, Shen Y, White NM, Hawkes JJ, Coakley WT (2003) A silicon micro fluidic ultrasonic separator. Sens Actuators B 95:425–434

    Google Scholar 

  • Hart SJ, Terray A (2003) Refractive-index-driven separation of colloidal polymer particles using optical chromatography. Appl Phys Lett 83:25

    Google Scholar 

  • Hart SJ, Terray A, Arnold J, Leski TA (2008) Preparative optical chromatography with external collection and analysis. Optical Express 16(23):18782–18789

    Google Scholar 

  • Hartig R, Hausmann M, Cremer C (1995) In continuous focusing of biological particles by continuous immuno magnetic sorter: technique and applications. Electrophoresis 16:789–792

    Google Scholar 

  • Heller C (2001) Principles of DNA separation with capillary electrophoresis. Electrophoresis 22(4):629–643

    MathSciNet  Google Scholar 

  • Herrmann J, Karweit M, Drazer G (2009) Separation of suspended particles in microfluidic systems by directional locking in periodic fields. Phys Rev E Stat Nonlin Soft Matter Phys 79(6):061404

    Google Scholar 

  • Holm S, Beech JP, Barrett MP, Tegenfeldt JO (2011) Separation of parasites from human blood using deterministic lateral displacement. Lab Chip 11:1326–1332

    Google Scholar 

  • Holmes D, Morgan H (2002) Cell positioning and sorting using dielectrophoresis. Eur Cells Mater 4(2):120–122

    Google Scholar 

  • Hou HW, Gan HY, Bhagat AAS, Li LD, Lim CT, Han J (2012) A microfluidics approach towards high-throughput pathogen removal from blood using margination. Biomicrofluidics 6:024115

    Google Scholar 

  • Hsu C-H, Carlo DD, Chen C, Irimia D, Toner M (2008) Microvortex for focusing, guiding and sorting of particles. Lab Chip 8:2128–2134

    Google Scholar 

  • Hu X, Bessette PH, Qian J, Meinhart CD, Daugherty PS, Soh HT (2005) Marker-specific sorting of rare cells using dielectrophoresis. Proc Natl Acad Sci 102(44):15757–15761

    Google Scholar 

  • Huang Y, Wang XB, Becker FF, Gascoyne PRC (1998) Separation of polystyrene microbeads using dielectrophoretic gravitational field-flow-fractionation. Biophys J 74:2689–2701

    Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Google Scholar 

  • Huang S-B, Chen J, Wang J, Yang C-L, Wu M-H (2012) A new optically-induced dielectrophoretic (ODEP) force-based scheme for effective cell sorting. Int J Electrochem Sci 7:12656–12667

    Google Scholar 

  • Hur SC, Henderson-MacLennan NK, McCabe ERB, Carlo DD (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912

    Google Scholar 

  • Hyun K-A, Kim S-I, Kim Y-S, Han H, Jung H-I (2012) Continuous separation of circulating tumor cells from blood samples using a newly developed multi orifice flow fractionation (MOFF) chip 6th international conference on miniaturized systems for chemistry and life sciences, Okinawa, Japan

  • Imasaka T, Kawabata Y, Kaneta T, lshidru Y (1995) Optical chromatography. Anal Chem 67:1763–1765

    Google Scholar 

  • Inglis DW, Riehn R, Austin RH, Sturm JC (2004) Continuous micro fluidic immunomagnetic cell separation. Appl Phys Lett 85(21):5093–5095

    Google Scholar 

  • Inglis DW, Davis JA, Austin RH, Sturm JC (2006) Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–658

    Google Scholar 

  • Inglis DW, Herman N, Vesey G (2010) Highly accurate deterministic lateral displacement device and its application to purification of fungal spores. Biomicrofluidics 4:024109

    Google Scholar 

  • Inglis DW, Lord M, Nordon RE (2011) Scaling deterministic lateral displacement arrays for high throughput and dilution-free enrichment of leukocytes. J Micromech Microeng 21(054024):1–8

    Google Scholar 

  • Jain A, Posner JD (2008) Particle dispersion and separation resolution of pinched flow fractionation. Anal Chem 80(5):1641–1648

    Google Scholar 

  • Ji HM, Samper V, Chen Y, Heng CK, Lim TM, Yobas L (2008) Silicon-based microfilters for whole blood cell separation. Biomed Microdevices 10(2):251–257

    Google Scholar 

  • Joensson HN, Uhlen M, Svahn HA (2010) Deterministic lateral displacement device for droplet separation by size: towards rapid clonal selection based on droplet shrinking. In: 14th International conference on miniaturized systems for chemistry and life sciences, Groningen, The Netherlands

  • Joensson HN, Uhlen M, Svahn HA (2011) Droplet size based separation by deterministic lateral displacement: separating droplets by cell-induced shrinking. Lab Chip 11:1305–1310

    Google Scholar 

  • Kaneta T, Ishidzu Y, Mishima N, Imasaka T (1997a) Theory of optical chromatography. Anal Chem 69(14):2701–2710

    Google Scholar 

  • Kaneta T, Ishidzu Y, Mishima N, Imasaka T (1997b) Theory of optical chromatography. Anal Chem 69:2701–2710

    Google Scholar 

  • Kapishnikov S, Kantsler V, Steinberg V (2006) Continuous particle size separation and size sorting using ultrasound in a micro channel. J Stat Mech: Theory Exp P01012

  • Kawamata T, Yamada M, Yasuda M, Seki M (2008) Continuous and precise particle separation by electro-osmotic flow control in microfluidic device. Electrophoresis 29:1423–1430

    Google Scholar 

  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY (2008) Recent advances in microparticle continuous separation. IET Nanobiotechnol 2(1):1–13

    Google Scholar 

  • Kersaudy-Kerhoas M, Kavanagh DM, Dhariwal RS, Campbell CJ, Desmulliez MPY (2010a) Validation of a blood plasma separation system by biomarker detection, lab on chip, pp 1587–1595

  • Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L (2010b) Hydrodynamic blood plasma separation in microfluidic channels. J Microfluid Nanofluid 8(1):105–114

    Google Scholar 

  • Kim SB, Kim JH, Kim SS (2006) Theoretical development of in situ optical particle separator: cross-type optical chromatography. Appl Opt 45(27):6919–6924

    Google Scholar 

  • Kim U, Qian J, Kenrick SK, Daugherty PS, Soh HT (2008) Multi target dielectrophoresis activated cell sorter. Anal Chem 80:8656–8661

    Google Scholar 

  • Kim J, Massoudi M, Antaki JF, Gandini A (2012) Removal of malaria-infected red blood cells using magnetic cell separators: a computational study. Appl Math Comput 218:6841–6850

    MATH  MathSciNet  Google Scholar 

  • Knight JC, Birks TA, Cregan RF, St P, Russell J, De Sandro J-P (1998) Large mode area photonic crystal fibre. Electron Lett 34(13):1347–1348

    Google Scholar 

  • Kuberkar V, Czekaj P, Davis R (1998) Flux enhancement for membrane filtration of bacterial suspensions using high-frequency backpulsing. Biotechnol Bioeng 60(1):77–87

    Google Scholar 

  • Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I (2009) Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–2980

    Google Scholar 

  • Kwon K, Sim T, Moon H-S, Lee J-G, Park JC, Jung H-I (2010) A novel particle separation method using multi-stage multi-orifice flow fractionation (MS-MOFF). In: 14th International conference on miniaturized systems for chemistry and life sciences, Groningen, The Netherland

  • Ladavac K, Kasza K, Grier DG (2004) Sorting mesoscopic objects with periodic potential landscapes: optical fractionation. Phys Rev E70:010901(R)

    Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2006) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Chem Soc Rev 36:492–506

    Google Scholar 

  • Laurell T, Petersson F, Nilsson A (2007) Chip integrated strategies for acoustic separation and manipulation of cells and particles. Annual Chem Soc Rev 36:492–506

    Google Scholar 

  • Leal L (1980) Particle motions in a viscous fluid. Annu Rev Fluid Mech 12:435–476

    MathSciNet  Google Scholar 

  • Lee MP, Padgett MJ (2012) Optical tweezers: a light touch. J Microsc 248:219–222

    Google Scholar 

  • Lee H, Purdon AM, Westervelt RM (2004) Manipulation of biological cells using a microelectromagnet matrix. Appl Phys Lett 85(6):1063–1065

    Google Scholar 

  • Lee G-B, Lin Y-H, Lin W-Y, Wang W, Guo T-F (2009) Optically-induced dielectrophoresis using polymer materials for biomedical applications, Transducers 2009, Denver, CO

  • Lee KH, Kim SB, Lee KS, Sung HJ (2010) Adjustable particle separation in pinched flow fractionation with optical force, ISFV14–14th international symposium on flow visualization, Daegu, Korea

  • Lee WC, Bhagat AAS, Huang S, Vliet KJV, Han J, Lim CT (2011a) High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:1359

    Google Scholar 

  • Lee MG, Choi S, Park JK (2011b) Inertial separation in a contraction-expansion array micro channel. J Chromatogr A 1218(27):4138–4143

    Google Scholar 

  • Lee MG, Choi S, Kim H-J, Lim HK, Kim J-H, Huh N, Park J-K (2011c) High-yield blood plasma separation by modulating inertial migration in a contraction–expansion array microchannel, Transducers’11, Beijing, China

  • Lee MG, Choi S, Kim H-J, Lim HK, Kim J-H, Huh N, Park J-K (2011d) Inertial blood plasma separation in a contraction–expansion array microchannel. Appl Phys Lett 98:253702

    Google Scholar 

  • Lee H, Xu L, Ahn B, Lee K, Oh KW (2012) Continuous-flow in-droplet magnetic particle separation in a droplet-based microfluidic platform. J Microfluid Nanofluid 13:613–623

    Google Scholar 

  • Lei H, Zhang Y, Li B (2012) Particle separation in fluidic flow by optical fiber. Opt Express 20(2):1292–1300

    MathSciNet  Google Scholar 

  • Lenshof A, Laurell T (2010) Continuous separation of cells and particles in microfluidic systems. Chem Soc Rev 39:1203–1217

    Google Scholar 

  • Lenshof A, Ahmad-Tajudin A, Jaras K, Sward-Nilsson A-M, Aberg L, Marko-Varga G, Malm J, Lilja H, Laurell T (2009) Acoustic whole blood plasmapheresis chip for prostate specific antigen microarray diagnostics. Anal Chem 81:6030–6037

    Google Scholar 

  • Lenshof A, Magnusson C, Laurell T (2012) Acoustofluidics 8: applications of acoustophoresis in continuous flow microsystems. Lab Chip 12:1210

    Google Scholar 

  • Leu TS, Weng CY (2009) Dynamics of dielectrophoretic field-flow fractionation(Dep-FFF) based micro sorter for cell separation. Mod Phys Lett B 23(3):389–392

    Google Scholar 

  • Liesfeld B, Nambiar R, Meiners JC (2003) Particle transport in asymmetric scanning-line optical tweezers. Phys Rev E 68:051907

    Google Scholar 

  • Lil M, Li S, Cao W, Li W, Wen W, Alici G (2012) Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis. J Micromech Microeng 22:095001–095009

    Google Scholar 

  • Lin Y-H, Lee G-B (2008) Optically induced flow cytometry for continuous microparticle counting and sorting. Biosens Bioelectron 24:572–578

    Google Scholar 

  • Lin Y-H, Lee G-B (2009) Optically-induced flow cytometry for continuous microparticle counting and sorting. Res Exp 11(4):1–3

    MathSciNet  Google Scholar 

  • Lin S-J, Hung S-H, Jeng J-Y, Guo T-F, Lee G-B (2012) Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices. Opt Express 20(1):583–592

    Google Scholar 

  • Link DR, Grasland-Mongrain E, Duri A, Sarrazin F, Cheng Z, Cristobal G, Marquez M, Witz DA (2006) Electric control of droplets in microfluidic devices. Angew Chem 118(16):2618–2622

    Google Scholar 

  • Liu Y, Lim KM (2011) Particle separation in microfluidics using a switching ultrasonic field. Lab Chip 11:3167–3173

    Google Scholar 

  • Liu C, Lagae L, Wirix-Speetjens R, Borghs G (2007a) On-chip separation of magnetic particles with different magnetophoretic mobilities. J Appl Phys 101(024913):1–4

    Google Scholar 

  • Liu C, Lagae L, Borghs G (2007b) Manipulation of magnetic particles on chip by magnetophoretic actuation and dielectrophoretic levitation. Appl Phys Lett 90:184109

    Google Scholar 

  • Liu Y, Hartono D, Lim K-M (2012) Cell separation and transportation between two miscible fluid streams using ultrasound. Biomicrofluidics 6:012802

    Google Scholar 

  • Lo M, Zahn JD (2012) Development of a multi-compartment microfiltration device for particle fractionation, 16th international conference on miniaturized systems for chemistry and life sciences, Okinawa, Japan

  • Long BR, Heller M, Beech JP, Link H, Bruus H, Tegenfeldt JO (2008) Multi-directional sorting modes in deterministic lateral displacement devices. Physical Review E: Statistical, Nonlinear and Soft Matter Physics 78, 4, 2, 046304

    Google Scholar 

  • Loutherback K, Chou KS, Newman J, Puchall J, Austin RH, Sturm JC (2010) Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid Nanofluid 9:1143–1149

    Google Scholar 

  • Loutherback K, D’Silva J, Liu L, Wu A, Austin RH (2012) Deterministic separation of cancer cells from blood at 10 mL/min. Am Inst Phys Adv 2:042107

    Google Scholar 

  • Lubbersen YS, Schutyse MAI, Boom RM (2012) Suspension separation with deterministic ratchets at moderate Reynolds numbers. Chem Eng Sci 73:314–320

    Google Scholar 

  • Lubbersen YS, Dijkshoorn JP, Schutyser MAI, Boom RM (2013) Visualization of inertial flow in deterministic ratchets. Sep Purif Technol 109:33–39

    Google Scholar 

  • Ma B, Yao B, Peng F, Yan S, Lei M, Rupp R (2012) Optical sorting of particles by dual-channel line optical tweezers. J Opt 14:105702–105707

    Google Scholar 

  • MacDonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Lett Nat 426(27):421–424

    Google Scholar 

  • Maenaka H, Yamada M, Yasuda M, Seki M (2008) Continuous and size-dependent sorting of emulsion droplets using hydrodynamics in pinched microchannels. Langmuir 24:4405–4410

    Google Scholar 

  • Magnaudet J, Takagi S, Legendre D (2003) Drag, deformation and lateral migration of a buoyant drop moving near a wall. J Fluid Mech 476:115–157

    MATH  Google Scholar 

  • Manz A, Harrison D, Verpoorte EMJ, Fettinger JC, Paulus A, Ludi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems - capillary electrophoresis on a chip. J Chromotogr 593:253–258

    Google Scholar 

  • McGloin D (2006) Optical tweezers: 20 years on. Philos Trans R Soc A 364:3521–3537

    MATH  Google Scholar 

  • Mielnik MM, Ekatpure RP, Saetran LR, Schonfeld F (2005) Sinusoidal cross flow microfiltration device- experimental and computational flow field analysis. Lab Chip 5(8):897–903

    Google Scholar 

  • Miltenyi S, Muller W, Weichel W, Radbruch A (1990) High gradient magnetic cell separation with MACS. Cytometry 11:231–238

    Google Scholar 

  • Monjushiro H, Hirai A, Watarai H (2000) Size dependence of laser-photophoretic efficiency of polystyrene microparticles in water. Langmuir 16(22):8539–8542

    Google Scholar 

  • Monjushiro H, Takeuchi K, Watarai H (2002) Anomalous laser photophoretic behavior of photo-absorbing organic droplets in water. Chem Lett 31:788–789

    Google Scholar 

  • Moorthy J, Beebe DJ (2003) In situ fabricated porous filters for Microsystems. Lab Chip 3:62–66

    Google Scholar 

  • Morgan H, Hughes MP, Green NG (1999) Separation of submicron bioparticles by dielectrophoresis. J Biophys 77(1):516–525

    Google Scholar 

  • Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched-flow fractionation for size- and density-based particle sorting in microchannels. Microfluid Nanofluid 11:105–110

    Google Scholar 

  • Murthy SK, Sethu P, Vunjak-Novakovic G, Toner M, Radisic M (2006) Size-based microfluidic enrichment of neonatal rat cardiac cell populations. Biomed Microdevices 8(3):231–237

    Google Scholar 

  • Nam J, Lim H, Kim C, Kang JY, Shin S (2012) Density dependent separation of encapsulated cells in a microfluidic channel by using a standing surface acoustic wave. Biomicrofluidics 6:024120

    Google Scholar 

  • Napierala M, Nasilowski T, Beres-Pawlik E, Mergo P, Berghmans F, Thienpo H (2011) Large-mode-area photonic crystal fiber with double lattice constant structure and low bending loss. Opt Express 19(23):22628–226236

    Google Scholar 

  • Nascimento EM, Nogueira N, Silva T, Braschler T, Demierre N, Renaud P, Oliva AG (2008) Dielectrophoretic sorting on a microfabricated flow cytometer: label free separation of Babesia bovis infected erythrocytes. Bioelectrochemistry 73(2):123–128

    Google Scholar 

  • Neale SL, Mazilu M, Wilson JIB, Dholakia K, Krauss TF (2007) The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP). Opt Express 15(20):12619–12626

    Google Scholar 

  • Nilsson A, Petersson F, Jonsson H, Laurell T (2004) Acoustic control of suspended particles in micro fluidic chips. Lab Chip 4:131–135

    Google Scholar 

  • Oakey J, Allely J, Marr DWM (2002) Laminar-flow-based separations at the microscale. Biotechnol Prog 18(6):1439–1442

    Google Scholar 

  • Ostergaard S, Blankenstein G, Dirac H, Leistiko O (1999) A novel approach to the automation of clinical chemistry by controlled manipulation of magnetic particles. J Magn Magn Mater 194:156–162

    Google Scholar 

  • Pamme N (2007) Continuous flow separations in microfluidic devices. Lab Chip 7:1644–1659

    Google Scholar 

  • Pamme N, Wilhelm C (2005) Micro total analysis systems 2005 In: K. Jensen (ed) Kluwer Academic Publishers, Boston, pp 1389

  • Pamme N, Eijkel JCT, Manz A (2006) On-chip free-flow magnetophoresis: separation and detection of mixtures of magnetic particles in continuous flow. J Magn Magn Mater 307:237–244

    Google Scholar 

  • Park JS, Jung H (2009) Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction expansion microchannels. Anal Chem 81:8280–8288

    Google Scholar 

  • Petersson F, Nilsson A, Holm C, Jonsson H, Laurell T (2004) Separation of lipids from blood utilizing ultrasonic standing waves in micro fluidic channels. Analyst 129:938–943

    Google Scholar 

  • Petersson F, Nilsson A, Jonsson H, Laurell T (2005) Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Anal Chem 77:1216–1221

    Google Scholar 

  • Petersson F, Berg LA, Sward-Nilsson A, Laurell T (2007) Free flow acoustophoresis: micro fluidic-based mode of particle and cell separation. Anal Chem 79:5117–5123

    Google Scholar 

  • Pohl HA (1977) Dielectrophoresis: applications to the characterization and separation of cell. Methods Cell Sep Biol Sep 1:67–169

    Google Scholar 

  • Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardiovasc Res 32:654–667

    Google Scholar 

  • Quek R, Le DV, Chiam K-H (2011) Separation of deformable particles in deterministic lateral displacement devices. Phys Rev E83:056301

    Google Scholar 

  • Rainer D, Sandoz R, Effenhauser CS (2007) Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels. Microfluid Nanofluid 3:47–53

    Google Scholar 

  • Redkar SG, Davis RH (1995) Cross-flow microfiltration with high-frequency reverse filtration. Am Inst Chem Eng J 41(3):501–508

    Google Scholar 

  • Reicherter M, Haist T, Wagemann EU, Tiziani HJ (1999) Optical particle trapping with computer-generated holograms written on a liquid-crystal display. Opt Lett 24:9

    Google Scholar 

  • Reyes DR, Lossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems: introduction, theory, and technology. Anal Chem 74:2623–2636

    Google Scholar 

  • Rida A, Fernandez V, Gijs MAM (2003) Long-range transport of magnetic microbeads using simple planar coils placed in a uniform magnetostatic field. Appl Phys Lett 83(12):2396–2398

    Google Scholar 

  • Ripperger S, Altmann J (2002) Crossflow microfiltration: state of the art. Sep Purif Technol 26(1):19–31

    Google Scholar 

  • Rivet C, Lee H, Hirsch A, Hamilton S, Lu H (2011) Microfluidics for medical diagnostics and biosensors. Chem Eng Sci 66(7):1490–1507

    Google Scholar 

  • Russom A, Gupta AK, Nagrath S, Carlo DD, Edd JF, Toner M (2009) Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J Phys 11:075025–075034

    Google Scholar 

  • Sai Y, Yamada M, Yasuda M, Seki M (2006) Continuous separation of particles using a microfluidic device equipped with flow rate control valves. J Chromatogr A 1127:214–220

    Google Scholar 

  • Segre G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210

    Google Scholar 

  • Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901

    Google Scholar 

  • Sethu P, Sin A, Toner M (2006) Microfluidic diffusive filter for apheresis (leukapheresis). Lab Chip 6:83–89

    Google Scholar 

  • Sim TS, Kwon K, Park JC, Lee J-G, Jung H-I (2011) Multistage-multiorifice flow fractionation (MS-MOFF): continuous size-based separation of microspheres using multiple series of contraction expansion microchannels. Lab Chip 11:93

    Google Scholar 

  • Situma C, Hashimoto M, Soper SA (2006) Merging microfluidics with microarray-based bioassays: review article. Biomol Eng 23(5):213–231

    Google Scholar 

  • Sollier E, Cubizolles M, Faivre M, Fouillet Y, Achard JL (2009) A passive microfluidic device for plasma extraction from whole human blood, 31st Annual International Conference of the IEEE EMBS Minneapolis, Minnesota, USA

  • Soong CY, Li WK, Liu CH, Tzeng PY (2010) Theoretical analysis for photophoresis of a microscale hydrophobic particle in liquids. Opt Express 18(3):2168–2182

    Google Scholar 

  • Sunahiro S, Senaha M, Yamada M, Seki M (2008) Pinched flow fractionation device for size- and density-dependent separation of particles utilizing centrifugal pumping, Twelfth international conference on miniaturized systems for chemistry and life sciences, San Diego, California, USA

  • Suresh S (2007) Biomechanics and biophysics of cancer cells. Acta Mater 55(12):3989–4014

    Google Scholar 

  • Suresh S, Spatz J, Mills JP, Micoulet A, Dao M, Lim CT, Beil M, Seufferlein T (2005) Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater 1(1):15–30

    Google Scholar 

  • Takagi J, Yamada M, Yasudaa M, Seki M (2005) Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab Chip 5:778–784

    Google Scholar 

  • Tam CKW, Hyman W (1973) Transverse motion of an elastic sphere in a shear field. J Fluid Mech 59:177–185

    MATH  Google Scholar 

  • Tamagawa M, Monjushiro H, Watarai H (2003) Microgravity laser-photophoresis of high density microparticles in water. Colloids Surf A Physicochem Eng Asp 220:279–284

    Google Scholar 

  • Terray A, Taylor JD, Hart SJ (2009) Cascade optical chromatography for sample fractionation. Biomicrofluidics 3(044106):1–6

    Google Scholar 

  • Toner M, Irimia D (2005) Blood on a chip. Annu Rev Biomed Eng 7:77–103

    Google Scholar 

  • Tripathi S, Prabhakar A, Kumar N, Singh SG, Agrawal A (2013) Blood plasma separation in elevated dimension T-shaped microchannel. Biomed Microdevices 15:415–425

    Google Scholar 

  • Tsai H, Fang YS, Fuh CB (2006) Analytical and preparative applications of magnetic split-flow thin fractionation on several ion-labeled red blood cells. Biomagn Res Technol 4:6

    Google Scholar 

  • Vahey MD, Voldman J (2008) An equilibrium method for continuous-flow cell sorting using dielectrophoresis. Anal Chem 80:3135–3143

    Google Scholar 

  • VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771

    Google Scholar 

  • VanDelinder V, Groisman A (2007) Perfusion in microfluidic cross-flow: separation of white blood cells from whole blood and exchange of medium in a continuous flow. Anal Chem 79(5):2023–2030

    Google Scholar 

  • Vaziri A, Gopinath A (2008) Cell and biomolecular mechanics in silico. Nat Mater 2007(7):15–23

    Google Scholar 

  • Vig AL, Kristensen A (2008) Separation enhancement in pinched flow fractionation. Appl Phys Lett 93(203507):1–3

    Google Scholar 

  • Wang XB, Huang Y, Becker FF, Gascoynet PRC (1994) A unified theory of dielectrophoresis and travelling wave dielectrophoresis. J Phys D Appl Phys 27:1571–1574

    Google Scholar 

  • Wang X-B, Yang J, Huang Y, Vykoukal J, Becker FF, Gascoyne PRC (2000) Cell separation by dielectrophoretic field-flow-fractionation. Anal Chem 72(4):832–839

    Google Scholar 

  • Wang W, Lin Y-H, Wen T-C, Guo T-F, Lee G-B (2010) Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices. Appl Phys Lett 96(113302):1–3

    Google Scholar 

  • Weddemann A, Wittbracht F, Auge A, Hütten A (2009) A hydrodynamic switch: microfluidic separation system for magnetic beads. Appl Phys Lett 94(17):3051–3052

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  • Wiklund M, Gunther C, Lemor R, Jager M, Fuhr G, Hertz HM (2006) Ultrasonic standing wave manipulation technology integrated into a dielectrophoretic chip. Lab Chip 6:1537–1544

    Google Scholar 

  • Wu Z, Liu AQ, Hjort K (2007) Microfluidic continuous particle/cell separation via electroosmotic-flow-tuned hydrodynamic spreading. J Micromech Microeng 17:1992–1999

    Google Scholar 

  • Wu Z, Willing B, Bjerketorp J, Janssonbc JK, Hjort K (2009) Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–1199

    Google Scholar 

  • Xiao K, Grier DG (2010a) Multidimensional optical fractionation of colloidal particles with holographic verification. Phys Rev Lett 104:028302

    Google Scholar 

  • Xiao K, Grier DG (2010b) Sorting colloidal particles into multiple channels with optical forces: prismatic optical fractionation. Phys Rev E 82:051407

    Google Scholar 

  • Xin H, Lei H, Zhang Y, Li X, Li B (2011) Photothermal trapping of dielectric particles by optical fiber-ring. Opt Express 19(3):2711–2719

    Google Scholar 

  • Xin H, Bao D, Zhong F, Li B (2013) Photophoretic separation of particles using two tapered optical fibers. Laser Phys Lett

  • Xing C, Fu CD, Lulu Z (2009) Isolation of plasma from whole blood using a microfluidic chip in a continuous cross-flow. Chin Sci Bull 54(2):324–327

    Google Scholar 

  • Xue X, Patel MK, Kersaudy-Kerhoas M, Desmulliez MPY, Bailey C, Topham D (2012) Analysis of fluid separation in microfluidic T-channels. Appl Math Model 36:743–755

    MATH  MathSciNet  Google Scholar 

  • Yamada M, Seki M (2006) Microfluidic particle sorter employing flow splitting and recombining. Anal Chem 78:1357–1362

    Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76:5465–5471

    Google Scholar 

  • Yamadaa M, Seki M (2005) Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab Chip 5:1233–1239

    Google Scholar 

  • Yang S, Undar A, Zahn JD (2006) A microfluidic device for continuous, real time blood plasma separation. Lab Chip 6:871–880

    Google Scholar 

  • Yoon DH, Ha JB, Bahk YK, Arakawa T, Shoji S, Go JS (2009) Size-selective separation of micro beads by utilizing secondary flow in a curved rectangular microchannel. Lab Chip 9(1):87–90

    Google Scholar 

  • Zabow G, Assi F, Jenks R, Prentiss M (2002) Guided microfluidics by electromagnetic capillary focusing. Appl Phys Lett 80(8):1483–1485

    Google Scholar 

  • Zeng L, Balachandar S, Fischer A (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25

    MATH  Google Scholar 

  • Zhang Y, Lei H, Li Y, Li B (2012) Microbe removal using a micrometre-sized optical fiber. Lab Chip 12(7):1302–1308

    Google Scholar 

  • Zheng MJ, Qu YL, Zhang YZ, Dong ZL (2013) Optically induced dielectrophoresis based automatic assembly of micro/nano-devices. Integr Ferroelectr 145:24–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis Kumar Sen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajeesh, P., Sen, A.K. Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17, 1–52 (2014). https://doi.org/10.1007/s10404-013-1291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1291-9

Keywords

Navigation