Skip to main content
Log in

Determination of the flow curve of complex fluids using the Rabinowitsch–Mooney equation in sensorless microrheometer

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this work, we present a way to make rheological measurements on a microfluidic chip. The originality of our approach relies on the determination of the flow curve of a fluid using the Rabinowitsch–Mooney equation. For this purpose, we use a parallel flow between a reference fluid and a studied fluid to measure the pressure drop inside the channel. Using a Newtonian fluid of known viscosity, knowing the flow rates of the two liquids and measuring the geometrical features of the two-phase flow allows determining the pressure drop in the channel. The Rabinowitsch–Mooney equation is used to calculate the local shear rate and shear stress at the wall for the studied sample. We validate our method for several complex fluids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abgrall P, Nguyen NT (2008) Nanofluidic devices and their applications. Anal chem 80(7):2326–2341

    Google Scholar 

  • Bagley E (1957) End corrections in the capillary flow of polyethylene. J Appl Phys 28:624

    Article  Google Scholar 

  • Berret J-F, Porte G, Decruppe J-P (1997) Inhomogeneous shear flows of wormlike micelles: a master dynamic phase diagram. Phys Rev E 55:1668

    Article  Google Scholar 

  • Clasen C, McKinley GH (2004) Gap-dependent microrheometry of complex liquids. J Non Newton Fluid Mech 124(1):1–10

    Article  MATH  Google Scholar 

  • Chevalier J, Ayela F (2008) Microfluidic on chip viscometers. Rev Sci Instrum 79:076102

    Article  Google Scholar 

  • Dhinojwala A, Granick S (1997) Micron-gap rheo-optics with parallel plates. J Chem Phys 107:8664

    Google Scholar 

  • Forgiarini A, Esquena J, Gonzalez C, SolansC (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17:2076

    Article  Google Scholar 

  • Gachelin J, Miño G, Berthet H, Lindner A, Rousselet A, Clément É (2013) Non-Newtonian viscosity of Escherichia coli suspensions. Phys Rev Lett 110(26):268103

    Article  Google Scholar 

  • Galambos P, Forster F (1998) An optical micro-fluidic viscometer. ASME international mechanical engineering congress and exposition, Anaheim, CA, pp 187–191

  • Guillot P, Panizza P, Salmon J-B, Joanicot M, Colin A, Bruneau C-H, Colin T (2006) Viscosimeter on a microfluidic chip. Langmuir 22:6438

    Article  Google Scholar 

  • Howard SJ, Ober TJ, Oliveira MS, Alves MA, McKinley GH (2012) Extensional rheology and elastic instabilities of a wormlike micellar solution in a microfluidic cross-slot device. Soft Matter 8(2):536–555

    Article  Google Scholar 

  • Kang K, Lee LJ, Koelling KW (2005) High shear microfluidics and its application in rheological measurement. Exp Fluids 38:222

    Google Scholar 

  • Kang YJ, Yoon SY, Lee K-H, Yang S (2010) A highly accurate and consistent microfluidic viscometer for continuous blood viscosity measurement. Artif Organs 34:944

    Article  Google Scholar 

  • Kang YJ, Yang S (2013) Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids. Microfluidics Nanofluidics 14:657

    Article  Google Scholar 

  • Lee J, Tripathi A (2005) Intrinsic viscosity of polymers and biopolymers measured by microchip. Anal Chem 77:7137

    Article  Google Scholar 

  • Lenk R (1978) The Hagen–Poiseuille equation and the Rabinowitsch correction. The pressure drop in tapered channels, in Polymer Rheology. Springer, New York, pp 750–785

  • Macosko C (1994) Rheology: principles, measurements, and applications. Wiley-VCH, Poughkeepsie, NY

    Google Scholar 

  • Mortensen NA, Okkels F, Bruus H (2005) Reexamination of Hagen Poiseuiille flow: shape dependence of the hydraulic resistance in micro channels. Phys Rev E71:057301

    Article  Google Scholar 

  • Nghe P, Fielding SM, Tabeling P, Ajdari A (2010) Interfacially driven instability in the microchannel flow of a shear-banding fluid. Phys Rev Lett 104(24):248303

    Article  Google Scholar 

  • Nguyen N-T, Yap Y-F, Sumargo A (2008) Microfluidic rheometer based on hydrodynamic focusing. Meas Sci Technol 19:085405

    Article  Google Scholar 

  • Pipe CJ, McKinley GH (2009) Microfluidic rheometry. Mech Res Commun 36:110

    Article  Google Scholar 

  • Salmon JB, Colin A, Manneville S, Molino F (2003) Velocity profiles in shear-banding wormlike micelles. Phys Rev Lett 90:228303

    Article  Google Scholar 

  • Solomon DE, Vanapalli SA (2013) Multiplexed microfluidic viscometer for high-throughput complex fluid rheology. Microfluid Nanofluid. doi:10.1007/s10404-013-1261-2

Download references

Acknowledgments

The authors gratefully acknowledge support from the Aquitaine Région.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annie Colin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guillot, P., Colin, A. Determination of the flow curve of complex fluids using the Rabinowitsch–Mooney equation in sensorless microrheometer. Microfluid Nanofluid 17, 605–611 (2014). https://doi.org/10.1007/s10404-013-1329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1329-z

Keywords

Navigation