Skip to main content
Log in

On the droplet velocity and electrode lifetime of digital microfluidics: voltage actuation techniques and comparison

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The distinct manageability of digital microfluidics (DMF) has rendered it a promising platform for building large-scale micro-reactors on a single chip for closed-loop automation. However, the limited velocity of the droplet transportation has hindered DMF from being utilized in high-throughput applications. This work investigates a control-engaged droplet actuation technique involving regular electronic hardware and computer-based software to simultaneously raise the velocity of the droplet transportation and elongate the electrode lifetime by lowering the root-mean-square value of the actuation voltage. The technique is based on a series of direct current (DC) pulses and multi-cycles of natural discharge coordinated with the droplet dynamic motions, facilitating real-time droplet position sensing. We found that the proposed technique was superior to both DC and AC in terms of the velocity. As to the electrode lifetime, all showed excellent performance under normal dielectric coating conditions, while AC (alternating current) performed the best under critical conditions. Altogether, this work exhibits a control-engaged electrode-driving scheme with a higher velocity and a longer lifetime compared with traditional DC actuation and for the first time provides a fundamental comparison among the techniques engaging different actuation signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelgawad M, Watson MWL, Wheeler AR (2009) Hybrid microfluidics: a digital-to-channel interface for in-line sample processing and chemical separations. Lab Chip 9:1046–1051. doi:10.1039/b820682a

    Article  Google Scholar 

  • Albella JM, Montero I, Martinez-Duart JM, Parkhutik V (1991) Dielectric breakdown processes in anodic Ta205 and related oxides. J Mater Sci 26:3422–3432. doi:10.1007/BF00557127

    Article  Google Scholar 

  • Banerjee AN, Qian SZ, Joo SW (2011) High-speed droplet actuation on single-plate electrode arrays. J Colloid Interface Sci 362:567–574. doi:10.1016/j.jcis.2011.07.014

    Article  Google Scholar 

  • Barbulovic-Nad I, Yang H, Park PS, Wheeler AR (2008) Digital microfluidics for cell-based assays. Lab Chip 8:519–526. doi:10.1039/b717759c

    Article  Google Scholar 

  • Basu AS (2013) Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 13:1892–1901. doi:10.1039/C3LC50074H

    Article  Google Scholar 

  • Bavière R, Boutet J, Fouillet Y (2008) Dynamics of droplet transport induced by electrowetting actuation. Microfluid Nanofluidics 4:287–294. doi:10.1007/s10404-007-0173-4

    Article  Google Scholar 

  • Bogojevic D, Chamberlain MD, Barbulovic-Nad I, Wheeler AR (2012) A digital microfluidic method for multiplexed cell-based apoptosis assays. Lab Chip 12:627–634. doi:10.1039/c2lc20893h

    Article  Google Scholar 

  • Brassard D, Malic L, Normandin F, Tabrizianc M, Veres T (2008) Water-oil core-shell droplets for electrowetting-based digital microfluidic devices. Lab Chip 8:1342–1349. doi:10.1039/b803827a

    Article  Google Scholar 

  • Chakrabarty K, Fair RB, Zeng J (2010) Design tools for digital microfluidic biochips: toward functional diversification and more than moore. IEEE Trans Comput-Aided Des Integr Circuits Syst 29:1001–1017. doi:10.1109/tcad.2010.2049153

    Article  Google Scholar 

  • Chang YH, Lee GB, Huang FC, Chen YY, Lin JL (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevices 8:215–225. doi:10.1007/s10544-006-8171-y

    Article  Google Scholar 

  • Chen T, Dong C, Gao J, Jia Y, Mak PI, Vai MI, Martins RP (2014) Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics. AIP Adv 4. doi:10.1063/1.4873407

  • Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80. doi:10.1109/jmems.2002.807467

    Article  Google Scholar 

  • Damgaci Y, Cetiner BA (2013) A frequency reconfigurable antenna based on digital microfluidics. Lab Chip 13:2883–2887. doi:10.1039/c3lc50275a

    Article  Google Scholar 

  • Eydelnant IA, Uddayasankar U, Li BY, Liao MW, Wheeler AR (2012) Virtual microwells for digital microfluidic reagent dispensing and cell culture. Lab Chip 12:750–757. doi:10.1039/c2lc21004e

    Article  Google Scholar 

  • Fair RB (2007) Digital microfluidics: is a true lab-on-a-chip possible? Microfluid Nanofluidics 3:245–281. doi:10.1007/s10404-007-0161-8

    Article  Google Scholar 

  • Fan SK, Huang PW, Wang TT, Peng YH (2008) Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting. Lab Chip 8:1325–1331. doi:10.1039/b803204a

    Article  Google Scholar 

  • Fobel R, Fobel C, Wheeler AR (2013) DropBot: An open-source digital microfluidic control system with precise control of electrostatic driving force and instantaneous drop velocity measurement. Appl Phys Lett 102 doi:10.1063/1.4807118

  • Gao J et al (2013) An intelligent digital microfluidic system with fuzzy-enhanced feedback for multi-droplet manipulation. Lab Chip 13:443–451. doi:10.1039/c2lc41156c

    Article  Google Scholar 

  • Gong J, Kim CJ (2008) All-electronic droplet generation on-chip with real-time feedback control for EWOD digital microfluidics. Lab Chip 8:898–906. doi:10.1039/b717417a

    Article  Google Scholar 

  • Jebrail MJ, Wheeler AR (2009) Digital microfluidic method for protein extraction by precipitation. Anal Chem 81:330–335. doi:10.1021/ac8021554

    Article  Google Scholar 

  • Jebrail MJ, Bartsch MS, Patel KD (2012) Digital microfluidics: a versatile tool for applications in chemistry, biology and medicine. Lab Chip 12:2452–2463. doi:10.1039/c2lc40318h

    Article  Google Scholar 

  • Jia YW, Mak PI, Massey C, Martins RP, Wangh LJ (2013) Construction of a microfluidic chip, using dried-down reagents, for LATE-PCR amplification and detection of single-stranded DNA. Lab Chip 13:4635–4641. doi:10.1039/C3LC51049B

    Article  Google Scholar 

  • Liu YJ, Yao DJ, Lin HC, Chang WY, Chang HY (2008) DNA ligation of ultramicro volume using an EWOD microfluidic system with coplanar electrodes. J Micromech Microeng 18 doi:10.1088/0960-1317/18/4/045017

  • Malic L, Veres T, Tabrizian M (2009) Biochip functionalization using electrowetting-on-dielectric digital microfluidics for surface plasmon resonance imaging detection of DNA hybridization. Biosens Bioelectron 24:2218–2224. doi:10.1016/j.bios.2008.11.031

    Article  Google Scholar 

  • Malic L, Veres T, Tabrizian M (2011) Nanostructured digital microfluidics for enhanced surface plasmon resonance imaging. Biosens Bioelectron 26:2053–2059. doi:10.1016/j.bios.2010.09.001

    Article  Google Scholar 

  • Miller EM, Ng AHC, Uddayasankar U, Wheeler AR (2011) A digital microfluidic approach to heterogeneous immunoassays. Anal Bioanal Chem 399:337–345. doi:10.1007/s00216-010-4368-2

    Article  Google Scholar 

  • Mousa NA et al. (2009) Droplet-scale estrogen assays in breast tissue, blood, and serum. Sci Transl Med 1 doi:10.1126/scitranslmed.3000105

  • Murran MA, Najjaran H (2012a) Capacitance-based droplet position estimator for digital microfluidic devices. Lab Chip 12:2053–2059. doi:10.1039/c2lc21241b

    Article  Google Scholar 

  • Murran MA, Najjaran H (2012b) Direct current pulse train actuation to enhance droplet control in digital microfluidics. Appl Phys Lett 101:144102. doi:10.1063/1.4756914

    Article  Google Scholar 

  • Nelson WC, Kim CJ (2011) Monolithic fabrication of EWOD chips for picoliter droplets. J Microelectromech Syst 20:1419–1427. doi:10.1109/jmems.2011.2167673

    Article  Google Scholar 

  • Ng AHC, Choi K, Luoma RP, Robinson JM, Wheeler AR (2012) Digital microfluidic magnetic separation for particle-based immunoassays. Anal Chem 84:8805–8812. doi:10.1021/ac3020627

    Article  Google Scholar 

  • Noh JH, Noh J, Kreit E, Heikenfeldb J, Rack PD (2012) Toward active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed oxide thin film transistors. Lab Chip 12:353–360. doi:10.1039/C1LC20851A

    Article  Google Scholar 

  • Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101. doi:10.1039/b110474h

    Article  Google Scholar 

  • Rajabi N, Dolatabadi A (2010) A novel electrode shape for electrowetting-based microfluidics. Colloid Surf A-Physicochem Eng Asp 365:230–236. doi:10.1016/j.colsurfa.2010.01.039

    Article  Google Scholar 

  • Ren H, Fair RB, Pollack MG, Shaughnessy EJ (2002) Dynamics of electro-wetting droplet transport. Sens Actuator B-Chem 87:201–206. doi:10.1016/s0925-4005(02)00223-x

    Article  Google Scholar 

  • Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens Actuator B-Chem 98:319–327. doi:10.1016/j.snb.2003.09.030

    Article  Google Scholar 

  • Schertzer MJ, Ben-Mrad R, Sullivan PE (2010) Using capacitance measurements in EWOD devices to identify fluid composition and control droplet mixing. Sens Actuator B-Chem 145:340–347. doi:10.1016/j.snb.2009.12.019

    Article  Google Scholar 

  • Schertzer MJ, Ben Mrad R, Sullivan PE (2012) Automated detection of particle concentration and chemical reactions in EWOD devices. Sens Actuator B-Chem 164:1–6. doi:10.1016/j.snb.2012.01.027

    Article  Google Scholar 

  • Sen P, Kim CJ (2009) A fast liquid-metal droplet microswitch using EWOD-driven contact-line sliding. J Microelectromech Syst 18:174–185. doi:10.1109/jmems.2008.2008624

    Article  Google Scholar 

  • Sethi G, Bontempo B, Furman E, Horn MW, Lanagan MT, Bharadwaja SSN, Li J (2011) Impedance analysis of amorphous and polycrystalline tantalum oxide sputtered films. J Mater Res 26:745–753. doi:10.1557/jmr.2010.77

    Article  Google Scholar 

  • Shah GJ, Ding HJ, Sadeghi S, Chen SP, Kim CJ, van Dam RM (2013) On-demand droplet loading for automated organic chemistry on digital microfluidics. Lab Chip 13:2785–2795. doi:10.1039/c3lc41363b

    Article  Google Scholar 

  • Shibata S (1996) Dielectric constants of Ta2O5 thin films deposited by r.f. sputtering. Thin Solid Films 277:1–4. doi:10.1016/0040-6090(95)08234-4

    Article  Google Scholar 

  • Shih SCC, Fobel R, Kumar P, Wheeler AR (2011) A feedback control system for high-fidelity digital microfluidics. Lab Chip 11:535–540. doi:10.1039/c0lc00223b

    Article  Google Scholar 

  • Shih SCC et al (2012) Dried blood spot analysis by digital microfluidics coupled to nanoelectrospray ionization mass spectrometry. Anal Chem 84:3731–3738. doi:10.1021/ac300305s

    Article  Google Scholar 

  • Shih SCC, Barbulovic-Nad I, Yang XN, Fobel R, Wheeler AR (2013) Digital microfluidics with impedance sensing for integrated cell culture and analysis. Biosens Bioelectron 42:314–320. doi:10.1016/j.bios.2012.10.035

    Article  Google Scholar 

  • Sista R et al (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104. doi:10.1039/b814922d

    Article  Google Scholar 

  • Srigunapalan S, Eydelnant IA, Simmons CA, Wheeler AR (2012) A digital microfluidic platform for primary cell culture and analysis. Lab Chip 12:369–375. doi:10.1039/c1lc20844f

    Article  Google Scholar 

  • Todd Thorsen SJM, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584. doi:10.1126/science.1076996

    Article  Google Scholar 

  • Wei AX, Ge ZX, Zhao XH, Liu J, Zhao Y (2011) Electrical and optical properties of tantalum oxide thin films prepared by reactive magnetron sputtering. J Alloy Compd 509:9758–9763. doi:10.1016/j.jallcom.2011.08.019

    Article  Google Scholar 

  • Witters D, Knez K, Ceyssens F, Puers R, Lammertyn J (2013) Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13:2047–2054. doi:10.1039/c3lc50119a

    Article  Google Scholar 

  • Zeng XY, Zhang KD, Pan J, Chen GP, Liu AQ, Fan SK, Zhou J (2013) Chemiluminescence detector based on a single planar transparent digital microfluidic device. Lab Chip 13:2714–2720. doi:10.1039/c3lc50170a

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the University of Macau and Macao Science and Technology Development Fund (FDCT) under No. 033/2011/A2 and State Key Lab Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pui-In Mak.

Additional information

Cheng Dong and Tianlan Chen have contributed equally to this work.

Rui P. Martins is on leave from Instituto Superior Técnico, University of Lisbon, Portugal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4,013 kb)

Supplementary material 2 (MPG 1,644 kb)

Supplementary material 3 (MPG 5,222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Chen, T., Gao, J. et al. On the droplet velocity and electrode lifetime of digital microfluidics: voltage actuation techniques and comparison. Microfluid Nanofluid 18, 673–683 (2015). https://doi.org/10.1007/s10404-014-1467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1467-y

Keywords

Navigation