Skip to main content
Log in

On-chip fabrication and magnetic force estimation of peapod-like hybrid microfibers using a microfluidic device

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Combining microfluidic methods for generating microdroplets and spinning microfibers, a novel type of alginate hybrid microfiber encapsulating different microdroplets is fabricated for various applications such as cell culture, tissue engineering and drug release. Traditional fabrication methods mainly depend on the microfluidic structure, so an effective method that uses microfluidic solution flow rates to control the generation of hybrid microfibers has not yet been developed. In this paper, we fabricate a microfluidic flow-focusing device with a long gelation microchannel to encapsulate magnetic oil microdroplets (MOMs) into alginate microfibers. We establish a hybrid microfiber generation model for this fabrication method based on limited flow rate to control microfiber width, MOM diameter and the distance between consecutive MOMs. We also calculate the magnetic force acting on a single MOM by measuring the distance and the MOM is deflected by disk magnets with respect to time in the long gelation microchannel. The magnetic forces acting on the microfibers can be further calculated by counting the number of encapsulated MOMs. The developed method has great potential for quantitative fabrication of diverse hybrid microfibers encapsulating a variety of magnetic hydrophobic microdroplets with estimated magnetic forces. Such magnetic hybrid microfibers are attractive for use in higher order alginate microfiber assemblies and dual drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agarwal P, Zhao ST, Bielecki P, Rao W, Choi JK, Zhao Y, Yu JH, Zhang WJ, He XM (2013) One-step microfluidic generation of pre-hatching embryo-like core-shell microcapsules for miniaturized 3D culture of pluripotent stem cells. Lab Chip. doi:10.1039/c3lc50678a

    Google Scholar 

  • Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655. doi:10.1038/nature04163

    Article  Google Scholar 

  • Christopher GF, Anna SL (2007) Microfluidic methods for generating continuous droplet streams. J Phys D Appl Phys 40:319–336. doi:10.1088/0022-3727/40/19/R01

    Article  Google Scholar 

  • Ghorbanian S, Qasaimeh MA, Akbari M, Tamayol A, Juncker D (2014) Microfluidic direct writer with integrated declogging mechanism for fabricating cell-laden hydrogel constructs. Biomed Microdevices. doi:10.1007/s10544-014-9842-8

    Google Scholar 

  • Hanuš J, Ullrich M, Dohnal J, Singh M, Štěpánek F (2013) Remotely controlled diffusion from magnetic liposome microgels. Langmuir 29:4381−4387. doi.org/10.1021/la4000318

  • Hu CZ, Nakajima M, Yue T, Takeuchi M, Seki M, Huang Q, Fukuda T (2013) On-chip fabrication of magnetic alginate hydrogel microfibers by multilayered pneumatic microvalves. Microfluid Nanofluidics. doi:10.1007/s10404-013-1325-3

    Google Scholar 

  • Jose MB, Cubaud T (2012) Droplet arrangement and coalescence in diverging/converging microchannels. Microfluid Nanofluidics 12:687–696. doi:10.1007/s10404-011-0909-z

    Article  Google Scholar 

  • Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH (2011) Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater 10:877–883. doi:10.1038/NMAT3108

    Article  Google Scholar 

  • Kang E, Choi YY, Chae SK, Moon JH, Chang JY, Lee SH (2012) Microfluidic spinning of flat alginate fibers with grooves for cell-aligning scaffolds. Adv Mater 24:4271–4277. doi:10.1002/adma.201201232

    Article  Google Scholar 

  • Lee CB, Chang CC, Huang SB, Yang RJ (2006) The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16:1024–1032

    Article  Google Scholar 

  • Li YH, Huang GY, Zhang XH, Li BQ, Chen YM, Liu TL, Lu TJ, Xu F (2013) Magnetic hydrogels and their potential biomedical applications. Adv Funct Mater 23:660–672. doi:10.1002/adfm.201201708

    Article  Google Scholar 

  • Lin YS, Huang KS, Yang CH, Wang CY, Yang YS, Hsu HC, Liao YJ, Tsai CW (2012) Microfluidic synthesis of microfibers for magnetic-responsive controlled drug release and cell culture. PLoS One. doi:10.1371/journal.pone.0033184

    Google Scholar 

  • Liu HH, Zhang YH (2011) Droplet formation in microfluidic cross-junctions. Phys Fluids 23:987–999

    Google Scholar 

  • Liu J, Shi J, Zhang F, Wang L, Yamamoto S, Takano M, Lianmei J, Haoli Z (2012) Segmented magnetic nanofibers for single cell manipulation. Appl Surf Sci 258:7530–7535. doi:10.1016/j.apsusc.2012.04.077

    Article  Google Scholar 

  • Miller E, Rotea M, Rothstein JP (2010) Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets. Lab Chip 10:1293–1301. doi:10.1039/b925497h

    Article  Google Scholar 

  • Shin SJ, Park JY, Lee JY, Park H, Park YD, Lee KB, Whang CM, Lee SH (2007) “On the fly” Continuous Generation of alginate fibers using a microfluidic device. Langmuir 23:9104–9108

    Article  Google Scholar 

  • Suh SK, Chapin SC, Hatton TA, Doyle PS (2012) Synthesis of magnetic hydrogel microparticles for bioassays and tweezer manipulation in microwells. Microfluid Nanofluidics 13:665–674. doi:10.1007/s10404-012-0977-8

    Article  Google Scholar 

  • Sun RP, Cubaud T (2011) Dissolution of carbon dioxide bubbles and microfluidic multiphase flows. Lab Chip 11:2924–2928. doi:10.1039/c1lc20348g

    Article  Google Scholar 

  • Thomas A, Gilson CD, Ahmed T (1995) Gelling of alginate fibres. J Chem Technol Biotechnol 64:73–79

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166. doi:10.1103/PhysRevLett.86.4163

    Article  Google Scholar 

  • Vladisavljević GT, Kobayashi I, Nakajima M (2012) Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluidics 13:151–178. doi:10.1007/s10404-012-0948-0

    Article  Google Scholar 

  • Xu F, Wu MCA, Rengarajan V, Finley TD, Keles HO, Sung Y, Li BQ, Gurkan UA, Demirci U (2011) Three-dimensional magnetic assembly of microscale hydrogels. Adv Mater 23:4254–4260. doi:10.1002/adma.201101962

    Article  Google Scholar 

  • Yamada M, Sugaya S, Naganuma Y, Seki M (2012) Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter 8:3122–3130

    Article  Google Scholar 

  • Yang K, Peng HB, Wen YH, Li N (2009a) Re-examination of characteristic FTIR spectrum of secondary layer in bilayer oleic acid-coated Fe3O4 nanoparticles. Appl Surf Sci 256:3093–3097. doi:10.1016/j.apsusc.2009.11.079

    Article  Google Scholar 

  • Yang CH, Huang KS, Lin YS, Lu K, Tzeng CC, Wang EC, Lin CH, Hsu WY, Chang JY (2009b) Microfluidic assisted synthesis of multi-functional polycaprolactone microcapusles: incorporation of CdTe quantum dots, Fe3O4 superparamagnetic nanoparticles and tamoxifen anticancer drugs. Lab Chip 9:961–965. doi:10.1039/b814952f

    Article  Google Scholar 

  • Yu Y, Wen H, Ma JY, Lykkemark S, Xu H, Qin JH (2014) Flexible fabrication of biomimetic bamboo-like hybrid microfibers. Adv Mater 26:2494–2499. doi:10.1002/adma.201304974

    Article  Google Scholar 

  • Zhang K, Liang QL, Ma S, Mu X, Hu P, Wang YM, Luo G (2009) On-chip manipulation of continuous picoliter-volume superparmagnetic dorplets using a magnetic force. Lab Chip 9:2992–2999

    Article  Google Scholar 

Download references

Acknowledgments

We thank Hasegawa lab at Nagoya University for the help during the design of microfluidic device. This work is supported by the National Natural Science Foundation of China under Grant Nos: 61375108, 61433010 and “111 Project” under Grant No: B08043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, T., Hu, C., Nakajima, M. et al. On-chip fabrication and magnetic force estimation of peapod-like hybrid microfibers using a microfluidic device. Microfluid Nanofluid 18, 1177–1187 (2015). https://doi.org/10.1007/s10404-014-1511-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-014-1511-y

Keywords

Navigation