Skip to main content
Log in

The squeeze-film air damping of circular and elliptical micro-torsion mirrors

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This paper proposes an analytical solution to calculate the squeeze-film air damping of circular and elliptical micro-torsion mirrors. To derive the expressions of squeeze-film air-damping torque, the nonlinear Reynolds equation, which governs the air behavior of torsion mirror, is solved by the method of eigenfunction expansions in polar coordinate and elliptical coordinate, respectively. The series solutions are integrated and summed up to deduce the damping torque of circular and elliptical torsion mirrors. The formulas of circular mirror and elliptical mirror are deduced independently, and their results match when the eccentricity of the elliptical mirror approaches zero. Besides, the results of the formulas are consistent with numerical simulation. Both of them verifies the damping torque formulas in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Asmar NH (2005) Partial differential equations with Fourier series and boundary value problems. Prentice Hall, New Jersey

    Google Scholar 

  • Bao M (2005) Analysis and design principles of MEMS devices, vol 80. Elsevier, Amsterdam

    Google Scholar 

  • Bao M, Sun Y, Zhou J, Huang Y (2006) Squeeze-film air damping of a torsion mirror at a finite tilting angle. J Micromech Microeng 16(11):2330–2335. doi:10.1088/0960-1317/16/11/012

    Article  Google Scholar 

  • Chang K, Lee S, Li S (2002) Squeeze film damping effect on a mems torsion mirror. J Micromech Microeng 12(5):556–561. doi:10.1088/0960-1317/12/5/307

    Article  Google Scholar 

  • Chen J, Zhu Y, Liu B, Wei W, Wang N, Zhang J (2013) Experimental study of Fourier transform spectrometer based on mems micro-mirror. Chin Opt Lett 11(5):053003

    Article  Google Scholar 

  • Elliptic Coordinate System (2013) http://en.wikipedia.org/wiki/Elliptic_coordinate_system

  • Famileh IZ, Esfahani JA, Moeenfard H (2015) Entropy generation analysis of squeeze film air damping in torsional micromirrors. Optik-Int J Light Electr Opt 126(1):28–37. doi:10.1016/j.ijleo.2014.07.144

    Article  Google Scholar 

  • Gugat M (2013) Efficient numerical evaluation of semianalytical models for squeeze film damping for torsion mirrors. J Nanomech Micromech 3(4):06013001. doi:10.1061/(ASCE)NM.2153-5477.0000075

    Article  Google Scholar 

  • Hao Z, Clark R, Hammer J, Whitley M, Wingfield B (2002) Modeling air-damping effect in a bulk micromachined 2D tilt mirror. Sensors Actuators A Phys 102(12):42–48. doi:10.1016/S0924-4247(02)00273-X

    Article  Google Scholar 

  • Korn GA, Korn TM (2000) Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. Courier Dover Publications, New York

    Google Scholar 

  • Leung RCW, Thurber T, Ye W (2011) On the modified Reynolds equation model for the prediction of squeeze-film gas damping in a low vacuum. Microfluid Nanofluid 11(6):753–762. doi:10.1007/s10404-011-0840-3

    Article  Google Scholar 

  • Li WL (2008) Squeeze film effects on dynamic performance of mems mu-mirrors-consideration of gas rarefaction and surface roughness. Microsyst Technol 14(3):315–324. doi:10.1007/s00542-007-0479-x

    Article  Google Scholar 

  • Li P, Fang Y (2010a) A molecular dynamics simulation approach for the squeeze-film damping of mems devices in the free molecular regime. J Micromech Microeng 20(3):035005. doi:10.1088/0960-1317/20/3/035005

    Article  Google Scholar 

  • Li P, Fang Y (2010) A wavelet interpolation Galerkin method for the simulation of mems devices under the effect of squeeze film damping. Math Prob Eng 2010:25. doi:10.1155/2010/586718

    Google Scholar 

  • Liang K, Liu F, Miu G (2010) Method of mathematical physics. Higher Education Press, Beijing

    Google Scholar 

  • Minikes A, Bucher I, Avivi G (2005) Damping of a micro-resonator torsion mirror in rarefied gas ambient. J Micromech Microeng 15(9):1762–1769. doi:10.1088/0960-1317/15/9/019

    Article  Google Scholar 

  • Moeenfard H, Ahmadian MT, Farshidianfar A (2011) Analytical modeling of squeeze film damping in micromirrors. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference, vol 7, American Society of Mechanical Engineers, Design Engineering Division; American Society of Mechanical Engineers, Computer and Information Engineering Division, American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016–5990, USA, pp 79–85, 2011. doi:10.1115/DETC2011-47125, ASME international design engineering technical conferences/computers and information in engineering conference (IDETC/CIE), Washington, DC, August 28–31

  • Moeenfard H, Kaji F, Ahmadian MT (2012) Coupled bending and torsion effects on the squeezed film air damping in torsional micromirrors. In: Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference, vol 5, ASME, Design Engineering Division; ASME, Computer and Information Engineering Division, American Society of Mechanical Engineers, Three Park Avenue, New York, NY 10016–5990, USA, pp 49–55, 2012. doi:10.1115/DETC2012-70114, ASME international design engineering technical conferences and computers and information in engineering conference, Chicago, IL, August 12–15

  • Pan F, Kubby J, Peeters E, Tran A, Mukherjee S (1998) Squeeze film damping effect on the dynamic response of a mems torsion mirror. J Micromech Microeng 8(3):200–208. doi:10.1088/0960-1317/8/3/005

    Article  Google Scholar 

  • Pandey AK, Pratap R, Chau FS (2007) Influence of boundary conditions on the dynamic characteristics of squeeze films in mems devices. J Microelectromech Syst 16(4):893–903. doi:10.1109/JMEMS.2007.901135

    Article  Google Scholar 

  • Pandey AK, Pratap R (2008) A semi-analytical model for squeeze-film damping including rarefaction in a mems torsion mirror with complex geometry. J Micromech Microeng 18(10):105003. doi:10.1088/0960-1317/18/10/105003

    Article  Google Scholar 

  • Pantano MF, Pagnotta L, Nigro S (2012) A numerical study of squeeze-film damping in mems-based structures including rarefaction effects. Fract Struct Integr 23(23):103–113. doi:10.3221/IGF-ESIS.23.11

    Google Scholar 

  • Pantano MF, Pagnotta L, Nigro S (2014) On the effective viscosity expression for modeling squeeze-film damping at low pressure. J Tribol-Trans ASME 136(3):031702. doi:10.1115/1.4026592

    Article  Google Scholar 

  • Sakai T et al (2011) A high speed mems scanner for 140-khz SS-OCT. In: 16th international conference on optical MEMS and nanophotonics, pp 73–74

  • Sprague RB, Montague T, Brown D (2005) Bi-axial magnetic drive for scanned beam display mirrors. In: MOEMS–MEMS micro and nanofabrication, International society for optics and photonics, pp 1–13

  • Veijola T (2007) Simple but accurate models for squeeze-film dampers. In: 2007 IEEE sensors, vol 1–3, IEEE sensors council, IEEE, 345 E 47th St, New York, NY 10017, USA, IEEE sensors, pp 83–86, 2007. doi:10.1109/ICSENS.2007.4388341, 6th IEEE sensors conference, Atlanta, GA, October 28–31

  • Yalcinkaya AD, Ergeneman O, Urey H (2007) Polymer magnetic scanners for bar code applications. Sensors Actuators A Phys 135(1):236–243

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Dr. Hui Fang for helpful suggestions. And this research was supported by the National Natural Science Foundation of China (Grant Nos. 51375399, 51375400), the Fundamental Research Funds for the Central Universities (3102014KYJD023) and NPU Foundation for Fundamental Research (Grant No. JCY20130119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayong Qiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, C., Qiao, D., Zeng, Q. et al. The squeeze-film air damping of circular and elliptical micro-torsion mirrors. Microfluid Nanofluid 19, 585–593 (2015). https://doi.org/10.1007/s10404-015-1585-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1585-1

Keywords

Navigation