Skip to main content
Log in

Active pumping and control of flows in centrifugal microfluidics

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This review is an account of centrifugal microfluidic systems that use various actuation strategies in addition to intrinsic centrifugal forces to accurately regulate the motion of fluids during rotation. Platforms that integrate active methods of pumping and flow control render centrifugal microfluidics more versatile as they facilitate integration and process automation by enabling (or improving the reliability of) important fluidic functions, such as metering, aliquoting, valving, flow switching, mixing, and inward pumping. Principles and working mechanisms underlying these strategies are described in the context of recent trends in instrument design and development where centrifugal platforms have been equipped with pneumatic, magnetic or electromechanical actuators serving as pumping and valving elements. The potential of these platforms to perform complex bioanalytical assays in an automated fashion is illustrated by several examples, which include on-chip preparation of aliquot libraries, nucleic acid purification, amplification and analysis as well as blood separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(Reprinted with permission, Copyright 2011, Springer)

Fig. 5

(Reprinted with permission, Copyright 2010, American Chemical Society)

Fig. 6
Fig. 7

(Reprinted with permission, Copyright 2015, Royal Society of Chemistry) b, c Close-up views of the rotating stage before and after accommodating a plastic-based, microfluidic chip. d Photograph of the platform in its current form

Fig. 8

(Reprinted with permission, Copyright 2016, Chemical and Biological Microsystems Society)

Fig. 9

(Reprinted with permission, Copyright 2015, Royal Society of Chemistry)

Fig. 10
Fig. 11

(Reprinted with permission, Copyright 2015, American Chemical Society)

Fig. 12

(Reprinted with permission, Copyright 2016, Chemical and Biological Microsystems Society)

Similar content being viewed by others

References

  • Abi-Samra K, Clime L, Kong L, Gorkin R, Kim TH, Cho YK, Madou M (2011) Thermo-pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 11:643–652

    Article  Google Scholar 

  • Abi-Samra K, Kim TH, Park DK, Kim N, Kim J, Kim H, Cho YK, Madou M (2013) Electrochemical velocimetry on centrifugal microfluidic platforms. Lab Chip 13:3253–3260

    Article  Google Scholar 

  • Aeinehvand MM, Ibrahim F, Harun SW, Al-Faqheri W, Thio THG, Kazemzadeh A, Madou M (2014) Latex micro-balloon pumping in centrifugal microfluidic platforms. Lab Chip 14:988–997

    Article  Google Scholar 

  • Al-Faqheri W, Ibrahim F, Thio THG, Aeinehvand MM, Arof H, Madou M (2015) Sens Actuat A 222:245–254

    Article  Google Scholar 

  • Amasia M, Cozzens M, Madou MJ (2012) Centrifugal microfluidic platform for rapid PCR amplification using integrated thermoelectric heating and ice-valving. Sens Actuat B 161:1191–1197

    Article  Google Scholar 

  • Andreasen SZ, Kwasny D, Amato L, Brøgger AL, Bosco FG, Andersen KB, Svendsen WE, Boisen A (2015) Integrating electrochemical detection with centrifugal microfluidics for real-time and fully automated sample testing. RSC Adv 5:17187–17193

    Article  Google Scholar 

  • Bissonnette L, Bergeron MG (2016) The GenePOC platform, a rational solution for extreme point-of-care testing. Micromachines 7:94.1–94.14

    Article  Google Scholar 

  • Brassard D, Clime L, Mounier M, Veres T (2016) Programmable aliquots in passive microfluidic devices using a centrifugal platform with active pneumatic pumping. Proc 20th Int Conf Miniat Syst Chem Life Sci (MicroTAS 2016) pp. 31–32

  • Burger S, Schulz M, von Stetten F, Zengerle R, Paust N (2016) Rigorous buoyancy driven bubble mixing for centrifugal microfluidics. Lab Chip 16:261–268

    Article  Google Scholar 

  • Cai Z, Xiang J, Chen H, Wang W (2016) Pneumatic siphon valving and switching in centrifugal microfluidics controlled by rotational frequency or rotational acceleration. Sens Actuat B 228:251–258

    Article  Google Scholar 

  • Cao X, deMello AJ, Elvira KS (2016) Enhanced versatility of fluid control in centrifugal microfluidic platforms using two degrees of freedom. Lab Chip 16:1197–1205

    Article  Google Scholar 

  • Choi K, Ng AHC, Fobel R, Wheeler AR (2012) Digital microfluidics. Annu Rev Anal Chem 5:413–440

    Article  Google Scholar 

  • Choi MS, Yoo JC (2015) Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and Coriolis effect. Appl Biochem Biotechnol 175:3778–3787

    Article  Google Scholar 

  • Clime L, Brassard D, Geissler M, Veres T (2015) Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications. Lab Chip 15:2400–2411

    Article  Google Scholar 

  • Clime L, Brassard D, Daoud J, Miville-Godin C, Veres T (2016) Centrifugal microfluidic approach to human blood fractionation with density gradient medium and world-to-chip connectivity. Proc 20th Int Conf Miniat Syst Chem Life Sci (MicroTAS 2016) pp. 857–858

  • Czilwik G, Messinger T, Strohmeier O, Wadle S, von Stetten F, Paust N, Roth G, Zengerle R, Saarinen P, Niittymäki J, McAllister K, Sheils O, O’Leary J, Mark D (2015) Rapid and fully automated bacterial pathogen detection on a centrifugal-microfluidic LabDisk using highly sensitive nested PCR with integrated sample preparation. Lab Chip 15:3749–3759

    Article  Google Scholar 

  • Deng Y, Fan J, Zhou S, Zhou T, Wu J, Li Y, Liu Z, Xuan M, Wua Y (2014) Euler force actuation mechanism for siphon valving in compact disk-like microfluidic chips. Biomicrofluidics 8:024101.1–024101.18

    Google Scholar 

  • Ducrée J, Haeberle S, Lutz S, Pausch S, von Stetten F, Zengerle R (2007) The centrifugal microfluidic Bio-Disk platform. J Micromech Microeng 17:S103–S115

    Article  Google Scholar 

  • Duncombe TA, Tentori AM, Herr AE (2015) Microfluidics: reframing biological enquiry. Nat Rev Mol Cell Biol 16:554–567

    Article  Google Scholar 

  • Eral HB,’t Mannetje DJCM, Oh JM (2013) Contact angle hysteresis: a review of fundamentals and applications. Colloid Polym Sci 291:247–260

    Article  Google Scholar 

  • Garcia-Cordero JL, Kurzbuch D, Benito-Lopez F, Diamond D, Lee LP, Ricco AJ (2010a) Optically addressable single-use microfluidic valves by laser printer lithography. Lab Chip 10:2680–2687

    Article  Google Scholar 

  • Garcia-Cordero JL, Basabe-Desmonts L, Ducrée J, Ricco AJ (2010b) Liquid recirculation in microfluidic channels by the interplay of capillary and centrifugal forces. Microfluid Nanofluid 9:695–703

    Article  Google Scholar 

  • Gaughran J, Boyle D, Murphy J, Kelly R, Ducrée J (2016) Phase-selective graphene oxide membranes for advanced microfluidic flow control. Microsys Nanoeng 2:16008.1–16008.7

    Article  Google Scholar 

  • Geissler M, Clime L, Hoa XD, Morton KJ, Hébert H, Poncelet L, Mounier M, Deschênes M, Gauthier ME, Huszczynski G, Corneau N, Blais BW, Veres T (2015) Microfluidic integration of a cloth-based hybridization array system (CHAS) for rapid, colorimetric detection of enterohemorrhagic Escherichia coli (EHEC) using an articulated, centrifugal platform. Anal Chem 87:10565–10572

    Article  Google Scholar 

  • Glière A, Delattre C (2006) Modeling and fabrication of capillary stop valves for planar microfluidic systems. Sens Actuat A 130/131:601–608

    Article  Google Scholar 

  • Godino N, Gorkin R, Linares AV, Burger R, Ducrée J (2013) Comprehensive integration of homogeneous bioassays via centrifugo-pneumatic cascading. Lab Chip 13:685–694

    Article  Google Scholar 

  • Gorkin R, Park J, Siegrist J, Amasia M, Lee BS, Park J-M, Kim J, Kim H, Madou M, Cho Y-K (2010a) Centrifugal microfluidics for biomedical applications. Lab Chip 10:1758–1773

    Article  Google Scholar 

  • Gorkin R, Clime L, Madou M, Kido H (2010b) Pneumatic pumping in centrifugal microfluidic platforms. Microfluid Nanofluid 9:541–549

    Article  Google Scholar 

  • Gorkin R, Soroori S, Southard W, Clime L, Veres T, Kido H, Kulinsky L, Madou M (2012a) Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluid Nanofluid 12:345–354

    Article  Google Scholar 

  • Gorkin R, Nwankire CE, Gaughran J, Zhang X, Donohoe GG, Rook M, O’Kennedy R, Ducrée J (2012b) Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12:2894–2902

    Article  Google Scholar 

  • Haeberle S, Schmitt N, Zengerle R, Ducrée J (2007) Centrifugo-magnetic pump for gas-to-liquid sampling. Sens Actuat A 135:28–33

    Article  Google Scholar 

  • Hitzbleck M, Avrain L, Smekens V, Lovchik RD, Mertens P, Delamarche E (2012) Capillary soft valves for microfluidics. Lab Chip 12:1972–1978

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304:987–990

    Article  Google Scholar 

  • Iverson BD, Garimella SV (2008) Recent advances in microscale pumping technologies: a review and evaluation. Microfluid Nanofluid 5:145–174

    Article  Google Scholar 

  • Kawai T, Naruishi N, Nagai H, Tanaka Y, Hagihara Y, Yoshida Y (2013) Rotatable reagent cartridge for high-performance microvalve system on a centrifugal microfluidic device. Anal Chem 85:6587–6592

    Article  Google Scholar 

  • Keller M, Wadle S, Paust N, Dreesen L, Nuese C, Strohmeier O, Zengerle R, von Stetten F (2015a) Centrifugo-thermopneumatic fluid control for valving and aliquoting applied to multiplex real-time PCR on off-the-shelf centrifugal thermocycler. RSC Adv 5:89603–89611

    Article  Google Scholar 

  • Keller M, Naue J, Zengerle R, von Stetten F, Schmidt U (2015b) Automated forensic animal family identification by nested PCR and melt curve analysis on an off-the-shelf thermocycler augmented with a centrifugal microfluidic disk segment. PLoS One 10:1–17

    Google Scholar 

  • Keller M, Czilwik G, Schott J, Schwarz I, Dormanns K, von Stetten F, Zengerle R, Paust N (2017) Robust temperature change rate actuated valving and switching for highly integrated centrifugal microfluidics. Lab Chip 17:864–875

    Article  Google Scholar 

  • Kim TH, Sunkara V, Park J, Kim CJ, Woo HK, Cho YK (2016) A lab-on-a-disc with reversible and thermally stable diaphragm valves. Lab Chip 16:3741–3749

    Article  Google Scholar 

  • Kinahan DJ, Early PL, Vembadi A, MacNamara E, Kilcawley NA, Glennon T, Diamond D, Brabazon D, Ducrée J (2016) Xurography actuated valving for centrifugal flow control. Lab Chip 16:3454–3459

    Article  Google Scholar 

  • Kong MCR, Salin ED (2010) Pneumatically pumping fluids radially inward on centrifugal microfluidic platforms in motion. Anal Chem 82:8039–8041

    Article  Google Scholar 

  • Kong MCR, Salin ED (2011) Pneumatic flow switching on centrifugal microfluidic platforms in motion. Anal Chem 83:1148–1151

    Article  Google Scholar 

  • Kong MCR, Bouchard AP, Salin ED (2012) Displacement pumping of liquids radially inward on centrifugal microfluidic platforms in motion. Micromachines 3:1–9

    Article  Google Scholar 

  • Kong LX, Parate K, Abi-Samra K, Madou M (2015) Multifunctional wax valves for liquid handling and incubation on a microfluidic CD. Microfluid Nanofluid 18:1031–1037

    Article  Google Scholar 

  • Kong LX, Perebikovsky A, Moebius J, Kulinsky L, Madou M (2016) Lab-on-a-CD: a fully integrated molecular diagnostic system. J Lab Autom 21:323–355

    Article  Google Scholar 

  • Lin S, Lian W, Chen C, Yang C, Wo AM (2012) A multifunctional vent valve system in a centrifugal microfluidic platform. Proc 16th Int Conf Miniat Syst Chem Life Sci (MicroTAS 2012) pp. 884–886

  • Mach AJ, Di Carlo D (2010) Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng 107:302–311

    Article  Google Scholar 

  • Madou M, Zoval J, Jia G, Kido H, Kim J, Kim N (2006) Development of novel passive check valves for the microfluidic CD platform Lab on a CD. Annu Rev Biomed Eng 8:601–628

    Article  Google Scholar 

  • Mark D, Haeberle S, Roth G, von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153–1182

    Article  Google Scholar 

  • Miao B, Peng N, Li L, Li Z, Hu F, Zhang Z, Wang C (2015) Centrifugal microfluidic system for nucleic acid amplification and detection. Sensors 15:27954–27968

    Article  Google Scholar 

  • Michael IJ, Kim TH, Sunkara V, Cho YK (2016) Challenges and opportunities of centrifugal microfluidics for extreme point-of-care testing. Micromachines 7:32.1–32.14

    Article  Google Scholar 

  • Park JM, Cho YK, Lee BS, Lee JG, Ko C (2007) Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices. Lab Chip 7:557–564

    Article  Google Scholar 

  • Pishbin E, Eghbal M, Fakhari S, Kazemzadeh A, Navidbakhsh M (2016) The effect of moment of inertia on the liquids in centrifugal microfluidics. Micromachines 7:215.1–215.12

    Article  Google Scholar 

  • Roy E, Stewart G, Mounier M, Malic L, Peytavi R, Clime L, Madou M, Bossinot M, Bergeron MG, Veres T (2015) From cellular lysis to microarray detection, an integrated thermoplastic elastomer (TPE) point of care Lab on a Disc. Lab Chip 15:406–416

    Article  Google Scholar 

  • Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015a) A microfluidic timer for timed valving and pumping in centrifugal microfluidics. Lab Chip 15:1545–1553

    Article  Google Scholar 

  • Schwemmer F, Hutzenlaub T, Buselmeier D, Paust N, von Stetten F, Mark D, Zengerle R, Kosse D (2015b) Centrifugo-pneumatic multi-liquid aliquoting—parallel aliquoting and combination of multiple liquids in centrifugal microfluidics. Lab Chip 15:3250–3258

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Clime L, Roy E, Peytavi R, Kido H, Bergeron M, Veres T, Madou M (2010a) Serial siphon valving for centrifugal microfluidic platforms. Microfluid Nanofluid 9:55–63

    Article  Google Scholar 

  • Siegrist J, Gorkin R, Bastien M, Stewart G, Peytavi R, Kido H, Bergeron M, Madou M (2010b) Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip 10:363–371

    Article  Google Scholar 

  • Smith S, Mager D, Perebikovsky A, Shamloo E, Kinahan D, Mishra R, Torres Delgado SM, Kido H, Saha S, Ducrée J, Madou M, Land K, Korvink JG (2016) CD-based microfluidics for primary care in extreme point-of-care settings. Micromachines 7:22.1–22.32

    Article  Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Article  Google Scholar 

  • Strohmeier O, Emperle A, Roth G, Mark D, Zengerle R, von Stetten F (2013) Centrifugal gas-phase transition magnetophoresis (GTM)—a generic method for automation of magnetic bead based assays on the centrifugal microfluidic platform and application to DNA purification. Lab Chip 13:146–155

    Article  Google Scholar 

  • Strohmeier O, Keller M, Schwemmer F, Zehnle S, Mark D, von Stetten F, Zengerle R, Paust N (2015) Centrifugal microfluidic platforms: advanced unit operations and applications. Chem Soc Rev 44:6187–6229

    Article  Google Scholar 

  • Stumpf F, Schwemmer F, Hutzenlaub T, Baumann D, Strohmeier O, von Stetten F, Zengerle R, Mark D (2015) Automated sample-to-answer nucleic acid testing with frequency controlled reagent release from cartridge integrated stickpacks. Proc 18th Int Conf Solid-State Sens Actuat Microsys (Transducers 2015) pp. 743–746

  • Stumpf F, Schwemmer F, Hutzenlaub T, Baumann D, Strohmeier O, Dingemanns G, Simons G, Sager C, Plobner L, von Stetten F, Zengerle R, Mark D (2016) LabDisk with complete reagent prestorage for sample-to-answer nucleic acid based detection of respiratory pathogens verified with influenza A H3N2 virus. Lab Chip 16:199–207

    Article  Google Scholar 

  • Tang M, Wang G, Kong SK, Ho HP (2016) A Review of biomedical centrifugal microfluidic platforms. Micromachines 7:26.1–26.29

    Article  Google Scholar 

  • Thio THG, Ibrahim F, Al-Faqheri W, Soin N, Abdul Kahar MKB, Madou M (2013a) Multi-level 3D implementation of thermo-pneumatic pumping on centrifugal microfluidic CD platforms. Proc 35th Annu Int Conf IEEE EMBS pp. 5513–5516

  • Thio THG, Ibrahim F, Al-Faqheri W, Moebius J, Khalid NS, Soin N, Kahar MKBA, Madou M (2013b) Push pull microfluidics on a multi-level 3D CD. Lab Chip 13:3199–3209

    Article  Google Scholar 

  • Thio THG, Ibrahim F, Al-Faqheri W, Soin N, Bador MK, Madou M (2015) Sequential push-pull pumping mechanism for washing and evacuation of an immunoassay reaction chamber on a microfluidic CD platform. PLoS One 10:1–17

    Google Scholar 

  • Ukita Y, Takamura Y, Utsumi Y (2015) Water-clock-based autonomous flow sequencing in steadily rotating centrifugal microfluidic device. Sens Actuat B 220:180–183

    Article  Google Scholar 

  • Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288:113–116

    Article  Google Scholar 

  • Urban PL (2015) Universal electronics for miniature and automated chemical assays. Analyst 140:963–975

    Article  Google Scholar 

  • van Oordt T, Barb Y, Smetana J, Zengerle R, von Stetten F (2013) Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip 13:2888–2892

    Article  Google Scholar 

  • Vestad T, Marr DWM, Oakey J (2004) Flow control for capillary-pumped microfluidic systems. J Micromech Microeng 14:1503–1506

    Article  Google Scholar 

  • Wang GJ, Hsu WH, Chang YZ, Yang H (2004) Centrifugal and electric field forces dual-pumping CD-like microfluidic platform for biomedical separation. Biomed Microdev 6:47–53

    Article  Google Scholar 

  • Wang G, Ho HP, Chen Q, Yang AK-L, Kwok H-C, Wu S-Y, Kong S-K, Kwan Y-W, Zhang X (2013) A lab-in-a-droplet bioassay strategy for centrifugal microfluidics with density difference pumping, power to disc and bidirectional flow control. Lab Chip 13:3698–3706

    Article  Google Scholar 

  • Zehnle S, Schwemmer F, Roth G, von Stetten F, Zengerle R, Paust N (2012) Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform. Lab Chip 12:5142–5145

    Article  Google Scholar 

  • Zehnle S, Schwemmer F, Bergmann R, von Stetten F, Zengerle R, Paust N (2015) Pneumatic siphon valving and switching in centrifugal microfluidics controlled by rotational frequency or rotational acceleration. Microfluid Nanofluid 19:1259–1269

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the GRDI-funded program “Strengthening Food and Water Safety in Canada through an Integrated Federal Genomics Initiative”. We thank Burton W. Blais (Canadian Food Inspection Agency, Ottawa, ON), Nathalie Corneau (Health Canada, Ottawa, ON) as well as Denis Charlebois (Canadian Space Agency, St-Hubert, QC) for support and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liviu Clime.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clime, L., Daoud, J., Brassard, D. et al. Active pumping and control of flows in centrifugal microfluidics. Microfluid Nanofluid 23, 29 (2019). https://doi.org/10.1007/s10404-019-2198-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-019-2198-x

Keywords

Navigation