Skip to main content
Log in

Large Eddy Simulation of a Planar Jet Flow with Nanoparticle Coagulation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Coagulation and growth of nanoparticles subject to large coherent structures in a planar jet has been explored by using large eddy simulation. The particle field is obtained by employing a moment method to approximate the nanoparticle general dynamic equation. An incompressible fluid containing particles of 1 nm in diameter is projected into a particle-free ambient. The results show that the coherent structures dominate the evolution of the nanoparticle number intensity diameter and polydispersity distributions as the jet develops. In addition, the coherent structures act to increase the diffusion of particles, and the vortex rolling-up makes the particles distributing more irregularly while the vortex pairing causes particle distributions to become uniform. As the jet travels downstream, the time-averaged particle number concentration becomes lower in the jet core and higher in the outskirts, whereas the time-averaged particle mass over the entire flow field maintains unaltered, and the time-averaged particle diameter and geometric standard deviations grow and reach their maximum on the interface of the jet region and the ambient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hulbert H.M., Katz S. (1964). Some problems in particle technology: a statisticl mechanical formulation. Chem. Eng. Sci. 19:555–574

    Article  Google Scholar 

  2. Sherwin M.B., Shinnar R., Katz S. (1967). Dynamic behavior of the well-mixed isothermal crystallizer. AIChE. J. 13:1141–1153

    Article  Google Scholar 

  3. Friedlander S.K. (1977). Smoke, dust and haze: fundamentals of aerosol behavior. Wiley, New York, NY

    Google Scholar 

  4. Seigneur C., Hudischewskyj A.B., Seinfeld J.H., Whitby K.T., Whitby E.R., Brock J.R., Barnses H.M. (1986). Simulation of aerosol dynamics: a comparative review of mathematical models. Aerosol. Sci. Technol. 5:205–222

    Article  Google Scholar 

  5. Frenklach M., Harris J.S. (1987). Aerosol dynamics modeling using the method of moments. J. Colloid. Interface Sci. 118:252–261

    Article  Google Scholar 

  6. McGraw R., Nemesure S., Schwartz S.E. (1998). Properties and evolution of aerosols with distribution having indentical moments. J. Aerosol. Sci. 29:761–772

    Article  Google Scholar 

  7. Settumba N., Garrick S.C. (2003). Direct numerical simulation of nanoparticle coagulation in a temporal mixing layer via a moment method. J. Aerosol. Sci. 34:149–167

    Article  Google Scholar 

  8. Pyykonen J., Jokiniemi J. (2000). Computational fluid dynamics based sectional aerosol modeling schemes. Journal of aerosol science. J. Aerosol. Sci. 31:531–550

    Google Scholar 

  9. Pratsinis S.E. (1988). Simultaneous nucleation, condensation and coagulation in aerosol reactors. J. Colloid. Interface Sci. 124:416–427

    Article  Google Scholar 

  10. Pratsinis S.E., Kim K.S. (1989). Particle coagulation, diffusion, and thermophoresis in laminar flows. J. Aerosol. Sci. 20:101–111

    Article  Google Scholar 

  11. Talukdar S.S., Swihart M.T. (2004). Aerosol dynamics modeling of silicon nanoparticle formation during silane pyrolysis: a comparison of three solution methods. J. Aerosol. Sci. 35:889–908

    Article  Google Scholar 

  12. Settumba N., Garrick S.C. (2004). A comparison of diffusive transport in a moment method for nanoparticle coagulation. J. Aerosol. Sci. 35:93–101

    Article  Google Scholar 

  13. Miller S.E., Garrick S.C. (2004). Nanoparticle coagulation in a planar jet. Aerosol. Sci. Technol. 38:79–89

    Article  Google Scholar 

  14. Modem S., Garrick S.C. (2003). Nanoparticle coagulation in a temporal mixing layer mean and size-selected images. J. Visualization 6:293–302

    Article  Google Scholar 

  15. Joutsensaari J., Ahonen P., Tapper U., Kauppinen E., Laurila J., Kuokkala V. (1996). Generation of nanophase fullerene particles via aerosol routes. Synth. Met. 77:85–88

    Article  Google Scholar 

  16. Giesen B., Orthner H.R., Kowalik A., Roth P. (2004). On the interaction of coagulation and coalescence during gas-phase synthesis of Fe-nanoparticle agglomerates. Chem. Eng. Sci. 59:2201–2211

    Article  Google Scholar 

  17. Moody E.G., Collins L.R. (2003). Effect of mixing on the nucleation and growth of titania particles. Aerosol. Sci. Technol. 37:403–424

    Article  Google Scholar 

  18. Lin J.Z., Shao X.M., Ni L.M. (2002). Wavelet analysis of coherent structures in a three-dimensional mixing layer. Acta. Mechanica. Sinica. 18(1):42–52

    Article  MathSciNet  Google Scholar 

  19. Lin J.Z. Shi X., Yu Z.S. (2005). The stress-microstructure relationship in an evolving mixing layer of fiber suspension. Acta. Mechanica. Sinica. 21(1):16–23

    Article  Google Scholar 

  20. Luo X.P., Chen S.Y. (2005). Transport of particles in an atmospheric turbulent boundary layer. Acta. Mechanica. Sinica. 21(3): 235–242

    Article  Google Scholar 

  21. Germano M., Piomelli U., Moin P., Cabot W.H. (1991). A dynamics subgrid-scale eddy viscosity model. Phys. Fluids A. 3:1760–1765

    Article  MATH  Google Scholar 

  22. Lilly D.K. (1992). A proposed modification of the Germano subgrid scale closeure method. Phys. Fluids. A. 4:633–635

    Article  Google Scholar 

  23. Suh S.M., Zachariah M.R., Girshick S.L. (2001). Modeling particle formation during low-pressure silane oxidation: Detailed chemical kinetics and aerosol dynamics. J. Vacuum. Sci. Technol. A. 19:940–951

    Article  Google Scholar 

  24. Xiong Y., Pratsins S.E. (1991). Gas phase production of particles in reactive turbulent flows. J. Aerosol. Sci. 22:637–655

    Article  Google Scholar 

  25. Lehtinen K.E.J., Zachariah M.R. (2001). Self-preserving theory for the volume distribution of particles undergoing brownian coagulation. J. Colloid. Interface. Sci. 242:314–318

    Article  Google Scholar 

  26. Ablitzer C., Gruy F., Perrais C. (2001). Powder formation by hydrolysis of metallic chlorides in a coaxial gas jet-experiments and modeling. Chem. Eng. Sci. 56:2409–2420

    Article  Google Scholar 

  27. Forstall W., Shapiro A.H. (1950). Momentum and mass transfer in coaxial gas jets. Trans. ASME. J. Appl. Mech. 17:399–408

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Lin.

Additional information

The project was supported by the National Natural Science Foundation of China (10372090) and the Doctoral Program of Higher Education of China (20030335001).

The English text was polished by Yunming Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Lin, J., Chen, L. et al. Large Eddy Simulation of a Planar Jet Flow with Nanoparticle Coagulation. Acta Mech Mech Sinica 22, 293–300 (2006). https://doi.org/10.1007/s10409-006-0011-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-006-0011-z

Keywords

Navigation