Skip to main content
Log in

Active elastic metamaterials for subwavelength wave propagation control

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Recent research activities in elastic metamaterials demonstrate a significant potential for subwavelength wave propagation control owing to their interior locally resonant mechanism. The growing technological developments in electro/magnetomechanical couplings of smart materials have introduced a controlling degree of freedom for passive elastic metamaterials. Active elastic metamaterials could allow for a fine control of material physical behavior and thereby induce new functional properties that cannot be produced by passive approaches. In this paper, two types of active elastic metamaterials with shunted piezoelectric materials and electrorheological elastomers are proposed. Theoretical analyses and numerical validations of the active elastic metamaterials with detailed microstructures are presented for designing adaptive applications in band gap structures and extraordinary waveguides. The active elastic metamaterial could provide a new design methodology for adaptive wave filters, high signal-to-noise sensors, and structural health monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pendry, J.B., Holden, A.J., Robbins, D.J., et al.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999)

    Article  Google Scholar 

  2. Smith, D.R., Padilla, W.J., Vier, D.C., et al.: Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  Google Scholar 

  3. Liu, Z., Zhang, X., Mao, Y., et al.: Locally resonant sonic materials. Science 289, 1734–1736 (2000)

    Article  Google Scholar 

  4. Fang, N., Xi, D., Xu, J., et al.: Ultrasonic metamaterials with negative modulus. Nat. Mater. 5, 452–456 (2006)

    Article  Google Scholar 

  5. Huang, H.H., Sun, C.T., Huang, G.L.: On the negative effective mass density in acoustic metamaterials. Int. J. Eng. Sci. 47, 610–617 (2009)

    Article  MathSciNet  Google Scholar 

  6. Yang, Z., Mei, J., Yang, M., et al.: Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008)

    Article  Google Scholar 

  7. Mei, J., Ma, G., Yang, M., et al.: Dark acoustic metamaterials as super absorbers for low-frequency sound. Nat. Commun. 3, 756 (2012)

    Article  Google Scholar 

  8. Liu, X.N., Hu, G.K., Huang, G.L., et al.: An elastic metamaterial with simultaneously negative mass density and bulk modulus. Appl. Phys. Lett. 98, 251907 (2011)

    Article  Google Scholar 

  9. Yan, X., Zhu, R., Huang, G.L., et al.: Focusing guided waves using surface bonded elastic metamaterials. Appl. Phys. Lett. 103, 121901 (2013)

    Article  Google Scholar 

  10. Wu, Y., Lai, Y., Zhang, Z.Q.: Elastic metamaterials with simultaneously negative effective shear modulus and mass density. Phys. Rev. Lett. 107, 105506 (2011)

    Article  Google Scholar 

  11. Zhu, R., Huang, G.L., Huang, H.H., et al.: Experimental and numerical study of guided wave propagation in a thin metamaterial plate. Phys. Lett. A 357, 2863–2867 (2011)

    Article  Google Scholar 

  12. Zhu, R., Liu, X.N., Hu, G.K., et al.: An chiral elastic metamaterial beam for broadband vibration suppression. J. Sound Vib. 333, 2759–2773 (2014)

    Article  Google Scholar 

  13. Forward, R.L.: Electronic damping of vibrations in optical structures. J. Appl. Opt. 18, 690–697 (1979)

    Article  Google Scholar 

  14. Hagood, N.W., Flotow, A.V.: Damping of structural vibrations with piezoelectric materials and passive electrical networks. J. Sound Vib. 146, 243–268 (1991)

    Article  Google Scholar 

  15. Wu, S.Y.: Method for multiple-mode shunt damping of structural vibration using a single PZT transducer. In: Proceedings of SPIE smart structures and materials, smart structures and intelligent systems, Huntington Beach, CA (1998)

  16. Wu, S.Y., Bicos, A.S.: Structural vibration damping experiments using improved piezoelectric shunts. In: Proceedings of SPIE smart structures and materials, San Diego, CA, 3–5 March, 40–50 (1997)

  17. Corr, L.R., Clark, W.W.: Comparison of low-frequency piezoelectric switching shunt techniques for structural damping. Smart Mater. Struct. 11, 370–376 (2002)

    Article  Google Scholar 

  18. Fleming, A.J., Belirens, S., Moheimani, S.O.R.: Synthetic impedance for implementation of piezoelectric shunt damping circuits. Electron. Lett. 36, 1525–1526 (2000)

    Article  Google Scholar 

  19. Behrens, S., Fleming, A.J., Moheimani, S.R.: A broadband controller for shunt piezoelectric damping of structural vibration. Smart Mater. Struct. 12, 18–28 (2003)

    Article  Google Scholar 

  20. Park, C., Park, H.: Multiple-mode structural vibration control using negative capacitive shunt damping. J. Mech. Sci. Technol. 17, 1650–1658 (2003)

    Google Scholar 

  21. Beck, B., Cunefare, K., Ruzzene, M., et al.: Experimental analysis of a cantilever beam with a shunted piezoelectric periodic array. J. Intell. Mater. Syst. Struct. 22, 1177–1187 (2011)

    Article  Google Scholar 

  22. Park, C.H., Baz, A.: Vibration control of beams with negative capacitive shunting of interdigital electrode piezoceramics. J. Vib. Control 11, 331–346 (2005)

    Article  MATH  Google Scholar 

  23. Date, M., Kutani, M., Sakai, S.: Electrically controlled elasticity utilizing piezoelectric coupling. J. Appl. Phys. 87, 863 (2000)

  24. Imoto, K., Nishiura, M., Yamamoto, K., et al.: Elasticity control of piezoelectric lead zirconate titanate (PZT) materials using negative-capacitance circuits. Jpn. J. Appl. Phys. 44, 7019–7023 (2005)

    Article  Google Scholar 

  25. Chen, S.B., Wen, J.H., Yu, D.L., et al.: Band gap control of phononic beam with negative capacitance piezoelectric shunt. Chin. Phys. B 20, 014301 (2011)

    Article  Google Scholar 

  26. Chen, S.B., Wen, J.H., Wang, G., et al.: Tunable band gaps in acoustic metamaterials with periodic arrays of resonant shunted piezos. Chin. Phys. B 22, 074301 (2013)

    Article  Google Scholar 

  27. Chen, S.B., Wang, G., Wen, J.H., et al.: Wave propagation and attenuation in plates with periodic arrays of shunted piezo-patches. J. Sound Vib. 332, 1520–1532 (2013)

    Article  Google Scholar 

  28. Casadei, F., Delpero, T., Bergamini, A., et al.: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 112, 064902 (2012)

    Article  Google Scholar 

  29. Airoldi, L., Ruzzene, M.: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011)

    Article  Google Scholar 

  30. Ginder, J.M., Nichols, M.E., Elie, L.D., et al.: Magnetorheological elastomers: properties and applications. Proc. SPIE 3675, 131–138 (1999)

    Google Scholar 

  31. Li, W.H., Zhang, X.Z.: A study of the magnetorheological effect of bimodal particle based magnetorheological elastomers. Smart Mater. Struct. 19, 035002 (2010)

    Article  Google Scholar 

  32. Xu, Z.B., Gong, X.L., Liao, G.J., et al.: An active damping-compensated magnetorheological elastomer adaptive tuned vibration absorber. J. Intell. Mater. Syst. Struct. 21, 1039–1047 (2010)

  33. Liao, G.J., Gong, X.L., Xuan, S.H., et al.: Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 23, 25–33 (2012)

    Article  Google Scholar 

  34. Liao, G.J., Gong, X.L., Xuan, S.H.: Phase based stiffness tuning algorithm for a magnetorheological elastomer dynamic vibration absorber. Smart Mater. Struct. 23, 015016 (2014)

    Article  Google Scholar 

  35. Xu, Z., Wu, F.: Elastic band gaps of magnetorheological elastomer vibration isolators. J. Intell. Mater. Syst. Struct. 10, 14535014 (2014)

    Google Scholar 

  36. Tang, H., Luo, C., Zhao, X.: Tunable characteristics of a flexible thin electrorheological layer for low frequency acoustic waves. J. Phys. D: Appl. Phys. 37, 2331–2336 (2004)

    Article  Google Scholar 

  37. Yeh, J.Y.: Control analysis of the tunable phononic crystal with electrorheological material. Phys. B: Condens. Matter 400, 137–144 (2007)

    Article  Google Scholar 

  38. Zhou, X.L., Chen, C.Q.: Tuning the locally resonant phononic band structures of two-dimensional periodic electroactive composites. Phys. B: Condens. Matter. 431, 23–31 (2013)

  39. Chen, Y.Y., Huang, G.L., Sun, C.T.: Band gap control in an active elastic metamaterial with negative capacitance piezoelectric shunting. J. Vib. Acoust. 136, 061008 (2014)

    Article  Google Scholar 

  40. Guo, N., Cawley, P.: The interaction of Lamb waves with delaminations in composite laminates. J. Acoust. Soc. Am. 94, 2240–2246 (1993)

    Article  Google Scholar 

  41. Lemistre, M., Balageas, D.: Structural health monitoring system based on diffracted Lamb wave analysis by multiresolution processing. Smart Mater. Struct. 10, 504–511 (2001)

    Article  Google Scholar 

  42. Liu, B., Shaw, M.T.: Electrorheology of filled silicone elastomers. J. Rheol. 45, 641–657 (2001)

    Article  Google Scholar 

  43. Hu, J., Chang, Z., Hu, G.K.: Approximate method for controlling solid elastic waves by transformation media. Phys. Rev. B 84, 201101(R) (2011)

    Article  Google Scholar 

  44. Chang, Z., Hu, J., Hu, G.K., et al.: Controlling elastic waves with isotropic materials. Appl. Phys. Lett. 98, 121904 (2011)

    Article  Google Scholar 

  45. Wu, T.T., Chen, Y.T., Sun, J.H., et al.: Focusing of the lowest antisymmetric Lamb wave in a gradient-index phononic crystal plate. Appl. Phys. Lett. 98, 171911 (2011)

    Article  Google Scholar 

  46. Schiller, N.H., Lin, S.C.S., Cabell, R.H., et al.: Design of a variable thickness plate to focus bending waves. In: ASME 2012 Noise Control and Acoustics Division Conference, New York City, New York, USA (2012)

Download references

Acknowledgments

This work was supported by the Air Force Office of Scientific Research under Grant AF 9550-15-1-0061 with Program Manager Dr. Byung-Lip (Les) Lee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.Y., Huang, G.L. Active elastic metamaterials for subwavelength wave propagation control. Acta Mech Sin 31, 349–363 (2015). https://doi.org/10.1007/s10409-015-0402-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-015-0402-0

Keywords

Navigation