Skip to main content
Log in

Rupture of a rubber sheet by a cavitation bubble: an experimental study

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Dynamics of spark-generated cavitation bubbles near a deformable rubber sheet are experimentally investigated in this study. The transient bubble–rubber interaction is captured by high-speed photography, including the expansion and collapse of the bubble, jetting behaviors, large deformation, and rupture of the rubber sheet. The dependence of bubble behaviors and rubber response on two governing parameters (the bubble–rubber stand-off distance \(\gamma \) and the rubber thickness T) are systematically studied. Firstly, the bubble collapse patterns or jetting directions are categorized into three regimes. If the bubble is initially located at a large \(\gamma \) from the rubber sheet, the jet is directed towards the boundary (regime I). Unexpectedly, when the generated bubble is close to the rubber sheet, it develops a jet away from the boundary (regime III). Bubble splitting and the formation of two axial liquid jets directing in opposite directions can only be observed with an intermediate \(\gamma \) (regime II). A phase diagram of the bubble behaviors is given in the \(\gamma \)T space. For a large rubber sheet thickness (e.g., \(T=5\) mm), only a downward jet is observed. From the perspective of jet direction, the effect of such a thick rubber sheet on the bubble dynamics is similar to that of a rigid wall. Note that the jet velocity and jet width may be slightly different. Secondly, the results reveal that bubble expansion can cause the boundary to deform. The strong axial jet towards the rubber sheet can damage and even rupture the rubber boundary. A parameter range within which the bubble jetting can rupture the rubber boundary is obtained. Besides, for a thin rubber sheet (\(T \le 4\) mm), the rupture is more likely to occur in regime II. For a thick rubber sheet (e.g., \(T=5\) mm), the rupture can be seen when the jet directly impacts the rubber sheet (regime I).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chahine, G.L., Kapahi, A., Choi, J.K., et al.: Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528–549 (2016)

    Article  Google Scholar 

  2. Ohl, C.D., Arora, M., Dijkink, R., et al.: Surface cleaning from laser-induced cavitation bubbles. Appl. Phys. Lett. 89, 074102 (2006)

    Article  Google Scholar 

  3. Reuter, F., Mettin, R.: Mechanisms of single bubble cleaning. Ultrason. Sonochem. 29, 550–562 (2016)

    Article  Google Scholar 

  4. Song, W.D., Hong, M.H., Lukyanchuk, B., et al.: Laser-induced cavitation bubbles for cleaning of solid surfaces. J. Appl. Phys. 95, 2952–2956 (2004)

    Article  Google Scholar 

  5. van Wijngaarden, L.: Mechanics of collapsing cavitation bubbles. Ultrason. Sonochem. 29, 524–527 (2016)

    Article  Google Scholar 

  6. Wang, Q., Mahmud, M., Cui, J., et al.: Numerical investigation of bubble dynamics at a corner. Phys. Fluids 32(5), 053306 (2020)

    Article  Google Scholar 

  7. Calvisi, M.L., Iloreta, J.I., Szeri, A.J.: Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse. J. Fluid Mech. 616, 63 (2008)

    Article  MATH  Google Scholar 

  8. Curtiss, G.A., Leppinen, D.M., Wang, Q.X., et al.: Ultrasonic cavitation near a tissue layer. J. Fluid Mech. 730, 245–272 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dollet, B., Marmottant, P., Garbin, V.: Bubble dynamics in soft and biological matter. Annu. Rev. Fluid Mech. 51, 331–355 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. Orthaber, U., Petkovšek, R., Schille, J., et al.: Effect of laser-induced cavitation bubble on a thin elastic membrane. Opt. Laser Technol. 64, 94–100 (2014)

    Article  Google Scholar 

  11. Hasan, F., Al Mahmud, K.A.H., Khan, M.I., et al.: Cavitation induced damage in soft biomaterials. Multiscale Sci. Eng. 3, 67–87 (2021)

    Article  Google Scholar 

  12. Yang, J., Yin, Y., Cramer, H.C., III., et al.: The penetration dynamics of a violent cavitation bubble through a hydrogel-water interface. Dyn. Behav. Mat. Conf. Proc. Soc. Exp. Mech. 1, (2021)

  13. Lokar, Ž., Dular, M.: Cavitation bubble dynamics in a vicinity of a thin membrane wetted by different fluids. Sci. Rep. 11, 1–7 (2021)

    Article  Google Scholar 

  14. Zhang, H., Lu, Z., Zhang, P., et al.: Experimental and numerical investigation of bubble oscillation and jet impact near a solid boundary. Opt. Laser Technol. 138, 106606 (2021)

    Article  Google Scholar 

  15. De Graaf, K.L., Penesis, I., Brandner, P.A.: Modelling of seismic airgun bubble dynamics and pressure field using the Gilmore equation with additional damping factors. Ocean Eng. 76, 32–39 (2014)

    Article  Google Scholar 

  16. Kalumuck, K.M., Duraiswami, R., Chahine, G.L.: Bubble dynamics fluid-structure interaction simulation by coupling fluid BEM and structural FEM codes. J. Fluids Struct. 9, 861–883 (1995)

    Article  Google Scholar 

  17. Kan, X.Y., Zhang, A.M., Yan, J.L., et al.: Numerical investigation of ice breaking by a high-pressure bubble based on a coupled BEM-PD model. J. Fluids Struct. 96, 103016 (2020)

    Article  Google Scholar 

  18. Li, J., Rong, J.: Bubble and free surface dynamics in shallow underwater explosion. Ocean Eng. 38, 1861–1868 (2011)

    Article  Google Scholar 

  19. Li, S., van der Meer, D., Zhang, A.M., et al.: Modelling large scale airgun-bubble dynamics with highly non-spherical features. Int. J. Multiph. Flow 122, 103143 (2020)

    Article  MathSciNet  Google Scholar 

  20. Li, S., Zhang, A.M., Han, R., et al.: 3D full coupling model for strong interaction between a pulsating bubble and a movable sphere. J. Comput. Phys. 392, 713–731 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, J., Zong, Z., Liu, K., et al.: Simulations of the dynamics and interaction between a floating structure and a near-field explosion bubble. Appl. Ocean Res. 78, 50–60 (2018)

    Article  Google Scholar 

  22. Ma, X., Huang, B., Zhao, X., et al.: Comparisons of spark-charge bubble dynamics near the elastic and rigid boundaries. Ultrason. Sonochem. 43, 80–90 (2018)

    Article  Google Scholar 

  23. Yan, J., Li, S., Kan, X., et al.: Higher-order nonlocal theory of Updated Lagrangian Particle Hydrodynamics (ULPH) and simulations of multiphase flows. Comput. Methods Appl. Mech. Eng. 368, 113176 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, S.P., Zhang, A.M., Liu, Y.L., et al.: Bubble dynamics and its applications. J. Hydrodyn. 30, 975–991 (2018)

    Article  Google Scholar 

  25. Li, S., Li, Y., Zhang, A.: Numerical analysis of the bubble jet impact on a rigid wall. Appl. Ocean Res. 50, 227–236 (2015)

    Article  Google Scholar 

  26. Blake, J.R., Taib, B.B., Doherty, G.: Transient cavities near boundaries. Part 1. Rigid boundary. J. Fluid Mech. 170, 479–497 (1986)

    Article  MATH  Google Scholar 

  27. Tomita, Y., Robinson, P.B., Tong, R.P., et al.: Growth and collapse of cavitation bubbles near a curved rigid boundary. J. Fluid Mech. 466, 259 (2002)

    Article  MATH  Google Scholar 

  28. Gonzalez-Avila, S.R., Denner, F., Ohl, C.D.: The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall. Phys. Fluids 33, 032118 (2021)

    Article  Google Scholar 

  29. Peng, H., Zhang, J., He, X., et al.: Thermal pseudo-potential lattice Boltzmann method for simulating cavitation bubbles collapse near a rigid boundary. Comput. Fluids 217, 104817 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Huang, J., Zhang, H.: Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall. Acta Mech. Sin. 23, 645–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yin, J., Zhang, Y., Zhu, J., et al.: Numerical investigation of the interactions between a laser-generated bubble and a particle near a solid wall. J. Hydrodyn. 33, 311–322 (2021)

    Article  Google Scholar 

  32. Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J. Fluid Mech. 47, 283–290 (1970)

    Article  Google Scholar 

  33. Han, B., Zhu, R., Guo, Z., et al.: Control of the liquid jet formation through the symmetric and asymmetric collapse of a single bubble generated between two parallel solid plates. Eur. J. Mech. B Fluids 72, 114–122 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zeng, Q., Gonzalez-Avila, S.R., Ohl, C.D.: Splitting and jetting of cavitation bubbles in thin gaps. J. Fluid Mech. 896 (2020)

  35. Horvat, D., Orthaber, U., Schille, J., et al.: Laser-induced bubble dynamics inside and near a gap between a rigid boundary and an elastic membrane. Int. J. Multiph. Flow 100, 119–126 (2018)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Y., Xie, X., Zhang, Y.: High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall. J. Hydrodyn. 30, 1012–1021 (2018)

    Article  Google Scholar 

  37. Dadvand, A., Dawoodian, M., Khoo, B.C., et al.: Spark-generated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation. Acta Mech. Sin. 29, 657–666 (2013)

    Article  Google Scholar 

  38. Ni, B.Y., Zhang, A.M., Wang, Q.X., et al.: Experimental and numerical study on the growth and collapse of a bubble in a narrow tube. Acta Mech. Sin. 28, 1248–1260 (2012)

    Article  Google Scholar 

  39. Zhang, A.M., Xiao, W., Wang, S.P.: Experimental investigation of the interaction between a pulsating bubble and a rigid cylinder. Acta Mech. Sin. 29, 503–512 (2013)

    Article  Google Scholar 

  40. Tang, H., Liu, Y.L., Cui, P., et al.: Numerical study on the bubble dynamics in a broken confined domain. J. Hydrodyn. 32, 1029–1042 (2020)

    Article  Google Scholar 

  41. Li, S.M., Zhang, A.M., Cui, P.: Study on the interaction between the bubble and free surface close to a rigid wall. Acta Mech. Sin. 38, 796–806 (2020)

    Google Scholar 

  42. Pearson, A., Cox, E., Blake, J.R., et al.: Bubble interactions near a free surface. Eng. Anal. Bound. Elem. 28, 295–313 (2004)

    Article  MATH  Google Scholar 

  43. Quah, E.W., Karri, B., Ohl, S.W., et al.: Expansion and collapse of an initially off-centered bubble within a narrow gap and the effect of a free surface. Int. J. Multiph. Flow 99, 62–72 (2018)

    Article  Google Scholar 

  44. Obreschkow, D., Kobel, P., Dorsaz, N., et al.: Cavitation bubble dynamics inside liquid drops in microgravity. Phys. Rev. Lett. 97, 094502 (2006)

    Article  Google Scholar 

  45. Koukouvinis, P., Gavaises, M., Supponen, O., et al.: Simulation of bubble expansion and collapse in the vicinity of a free surface. Phys. Fluids 28, 052103 (2016)

    Article  Google Scholar 

  46. Yan, J., Li, S., Zhang, A.M., et al.: Updated Lagrangian Particle Hydrodynamics (ULPH) modeling and simulation of multiphase flows. J. Comput. Phys. 393, 406–437 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Saleki-Haselghoubi, N., Shervani-Tabar, M.T., Taeibi-Rahni, M., et al.: Interaction of two spark-generated bubbles near a confined free surface. Theor. Comput. Fluid Dyn. 30, 185–209 (2016)

    Article  Google Scholar 

  48. Li, Z.R., Sun, L., Zong, Z., et al.: A boundary element method for the simulation of non-spherical bubbles and their interactions near a free surface. Acta Mech. Sin. 28, 51–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  49. Phan, T.H., Nguyen, V.T., Park, W.G.: Numerical study on strong nonlinear interactions between spark-generated underwater explosion bubbles and a free surface. Int. J. Heat Mass Transf. 163, 120506 (2020)

    Article  Google Scholar 

  50. Brujan, E.A., Nahen, K., Schmidt, P., et al.: Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech. 433, 251–281 (2001)

    Article  MATH  Google Scholar 

  51. Brujan, E.A., Nahen, K., Schmidt, P., et al.: Dynamics of laser-induced cavitation bubbles near elastic boundaries: influence of the elastic modulus. J. Fluid Mech. 433, 283–314 (2001)

    Article  MATH  Google Scholar 

  52. Klaseboer, E., Khoo, B.C.: An oscillating bubble near an elastic material. J. Appl. Phys. 96, 5808–5818 (2004)

    Article  Google Scholar 

  53. Li, S., Zhang, A.M., Han, R.: Counter-jet formation of an expanding bubble near a curved elastic boundary. Phys. Fluids 30, 121703 (2018)

    Article  Google Scholar 

  54. Goh, B.H.T., Gong, S.W., Ohl, S.W., et al.: Spark-generated bubble near an elastic sphere. Int. J. Multiph. Flow 90, 156–166 (2017)

    Article  Google Scholar 

  55. Gong, S.W., Goh, B.H.T., Ohl, S.W., et al.: Interaction of a spark-generated bubble with a rubber beam: numerical and experimental study. Phys. Rev. E 86, 026307 (2012)

    Article  Google Scholar 

  56. Heap, A., Juel, A.: Bubble transitions in strongly collapsed elastic tubes. J. Fluid Mech. 633, 485 (2009)

    Article  MATH  Google Scholar 

  57. Wang, S.P., Wang, Q.X., Leppinen, D.M., et al.: Acoustic bubble dynamics in a microvessel surrounded by elastic material. Phys. Fluids 30, 012104 (2018)

    Article  Google Scholar 

  58. Aghdam, A.H., Farhangmehr, V., Ohl, S.W., et al.: Characterization of the interaction of two oscillating bubbles near a thin elastic membrane. Exp. Fluids 53, 1723–1735 (2012)

    Article  Google Scholar 

  59. Aghdam, A.H., Ohl, S.W., Khoo, B.C., et al.: Effect of the viscosity on the behavior of a single bubble near a membrane. Int. J. Multiph. Flow 47, 17–24 (2012)

    Article  Google Scholar 

  60. Turangan, C.K., Ong, G.P., Klaseboer, E., et al.: Experimental and numerical study of transient bubble-elastic membrane interaction. J. Appl. Phys. 100, 054910 (2006)

    Article  Google Scholar 

  61. Horgan, C.O., Saccomandi, G.: Constitutive modelling of rubber-like and biological materials with limiting chain extensibility. Math. Mech. Solids 7, 353–371 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  62. Rebouah, M., Chagnon, G.: Permanent set and stress-softening constitutive equation applied to rubber-like materials and soft tissues. Acta Mech. 225, 1685–1698 (2014)

    Article  MathSciNet  Google Scholar 

  63. Holzapfel, G.A.: Similarities Between Soft Biological Tissues and Rubberlike Materials. Constitutive Models for Rubber IV, pp. 607–617. Routledge, Abingdon (2017)

    Book  Google Scholar 

  64. Lew, K.S.F., Klaseboer, E., Khoo, B.C.: A collapsing bubble-induced micropump: an experimental study. Sens. Actuator A. Phys. 133, 161–172 (2007)

    Article  Google Scholar 

  65. Li, S., Prosperetti, A., van der Meer, D.: Dynamics of a toroidal bubble on a cylinder surface with an application to geophysical exploration. Int. J. Multiph. Flow 129, 103335 (2020)

    Article  MathSciNet  Google Scholar 

  66. Huang, L.H., Yang, X.X., Gao, J.H.: Pseudo elastic analysis of carbon reinforced natural/styrene-butadiene blend rubber (NSBR) with ogden constitutive model. Mater. Sci. Forum 928, 20–25 (2018)

  67. Yoon, B., Kim, J.Y., Hong, U., et al.: Dynamic viscoelasticity of silica-filled styrene-butadiene rubber/polybutadiene rubber (SBR/BR) elastomer composites. Compos. B. Eng. 187, 107865 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 51879050, 51925904), the Heilongjiang Postdoctoral Fund (Grant LBH-Q20016), and the Fundamental Research Funds for the Central Universities (Grant 3072020CFJ0105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li.

Additional information

Executive Editor: Xueming Shao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kan, XY., Yan, JL., Li, S. et al. Rupture of a rubber sheet by a cavitation bubble: an experimental study. Acta Mech. Sin. 37, 1489–1497 (2021). https://doi.org/10.1007/s10409-021-01117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-021-01117-8

Keywords

Navigation