Skip to main content
Log in

Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index

  • Research Article
  • Published:
Annals of Finance Aims and scope Submit manuscript

Abstract

In this paper a couple of variance dependent instruments in the financial market are studied. Firstly, a number of aspects of the variance swap in connection to the Barndorff-Nielsen and Shephard model are studied. A partial integro-differential equation that describes the dynamics of the arbitrage-free price of the variance swap is formulated. Under appropriate assumptions for the first four cumulants of the driving subordinator, a Večeř-type theorem is proved. The bounds of the arbitrage-free variance swap price are also found. Finally, a price-weighted index modulated by market variance is introduced. The large-basket limit dynamics of the price index and the “error term” are derived. Empirical data driven numerical examples are provided in support of the proposed price index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agosto, A., Moretto, E.: Variance matters (in stochastic dividend discount models). Ann Financ 11(2), 283–295 (2015)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E.: Superposition of Ornstein–Uhlenbeck type processes. Theory Prob Appl 45, 175–194 (2001)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E.: Integrated OU processes and non-Gaussian OU-based stochastic volatility models. Scand J Stat 30(2), 277–295 (2003)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Jensen, J.L., Sørensen, M.: Some stationary processes in discrete and continuous time. Adv Appl Prob 30, 989–1007 (1998)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J R Stat Soc Ser B (Stat Methodol) 63, 167–241 (2001a)

    Article  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Modelling by Lévy processes for financial econometrics. In: Barndorff-Nielsen, O.E., Resnick, S. (eds.) Lévy Processes: Theory and Applications, pp. 283–318. Birkhäuser, Basel (2001b)

    Chapter  Google Scholar 

  • Barndorff-Nielsen, O.E., Shephard, N.: Basics of Lévy processes, draft Chapter from a Book by the Authors on Lévy Driven Volatility Models. http://www.people.fas.harvard.edu/shephard/introlevy120608.pdf (2012)

  • Bellamy, N., Jeanblanc, M.: Incompleteness of markets driven by a mixed diffusion. Financ Stoch 4(2), 209–222 (2000)

    Article  Google Scholar 

  • Benth, F.E., Groth, M., Kufakunesu, R.: Valuing volatility and variance swaps for a non-Gaussian Ornstein–Uhlenbeck stochastic volatility model. Appl Math Financ 14(4), 347–363 (2007)

    Article  Google Scholar 

  • Brockhaus, O., Long, D.: Volatility swaps made simple. Risk 19(1), 92–95 (2000)

  • Bush, N., Hambly, B.M., Haworth, H., Jin, L., Reisinger, C.: Stochastic evolution equations in portfolio credit modelling. SIAM J Financ Math 2, 627–664 (2011)

    Article  Google Scholar 

  • Cont, R., Tankov, P.: Financial Modelling With Jump Processes. Chapman and Hall/CRC Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton (2004)

  • Cont, R., Voltchkova, E.: Integro-differential equations for option prices in exponential Lévy models. Financ Stoch 9, 299–325 (2005)

    Article  Google Scholar 

  • Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1989)

    Google Scholar 

  • Habtemicael, S., SenGupta, I.: Pricing covariance swaps for Barndorff–Nielsen and Shephard process driven financial markets. Ann Financ Econ 11, 1650012 (2016)

    Article  Google Scholar 

  • Habtemicael, S., SenGupta, I.: Pricing variance and volatility swaps for Barndorff–Nielsen and Shephard process driven financial markets. Int J Financ Eng 3(4), 1650027 (2016)

    Article  Google Scholar 

  • Hambly, B.M., Vaicenavicius, J.: The \(3/2\) model as a stochastic volatility approximation for a large-basket price-weighted index. Int J Theor Appl Financ 18, 1550041 (2015)

    Article  Google Scholar 

  • Jakubenas, P.: On option pricing in certain incomplete markets. Tr Mat Inst Steklova 237, 123–142 (2002)

    Google Scholar 

  • Javaheri, A., Wilmott, P., Haug, E.: GARCH and volatility swaps, Wilmott Technical Article, January (2002)

  • Madan, D.: Asset pricing theory for two price economies. Ann Financ 11(1), 1–35 (2015)

    Article  Google Scholar 

  • Nicolato, E., Venardos, E.: Option pricing in stochastic volatility models of the Ornstein–Uhlenbeck type. Math Financ 13, 445–466 (2003)

    Article  Google Scholar 

  • Øksendal, B., Sulem, A.: Applied Stochastic Control of Jump Diffusions. Springer, Berlin, Heidelberg (2007)

    Book  Google Scholar 

  • Rebolledo, R.: La méthode des martingales appliquée à l’étude de la convergence en loi de processus. Mem Soc Math France 62, 1–5 (1979)

    Google Scholar 

  • Rhoads, R.: Trading VIX Derivatives: Trading and Hedging Strategies Using VIX Futures, Options, and Exchange Traded Notes. Wiley, New York (2011)

    Google Scholar 

  • Sato, K.-I.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  • SenGupta, I.: Generalized BN-S stochastic volatility model for option pricing. Int J Theor Appl Financ 19(02), 1650014 (2016)

    Article  Google Scholar 

  • Shreve, S.: Stochastic Calculus for Finance II: Continuous-Time Models. Springer, Berlin (2004)

    Google Scholar 

  • Swishchuk, A.: Modeling of variance and volatility swaps for financial markets with stochastic volatilities. Wilmott Magazine, September, Technical article No 2, 64–72 (2004)

  • Swishchuk, A.: Modeling and pricing of variance swaps for multi-factor stochastic volatilities with delay. Can Appl Math Q 14(4), 439–67 (2006)

    Google Scholar 

  • Swishchuk, A.: Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities. World Scientific Publishing Company, Singapore (2013)

    Book  Google Scholar 

  • Swishchuk, A., Vadori, N.: Smiling for the Delayed Volatility Swaps, Wilmott, November 2014, pp. 62–73 (2014)

  • Večeř, J.: Unified Asian pricing. Risk 15(6), 113–116 (2002)

    Google Scholar 

  • Večeř, J., Xu, M.: Pricing Asian options in a semimartingale model. Quant Financ 4, 170–175 (2004)

    Article  Google Scholar 

  • Vervuurt, A., Karatzas, I.: Diversity-weighted portfolios with negative parameter. Ann Financ 11(3 and 4), 411–432 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading of the manuscript and for suggesting points to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indranil SenGupta.

Appendices

A Appendix: Proof of Theorem 3.3

Proof

The dynamics of \(I_n^{(k)}\) is given by (3.5). Let

$$\begin{aligned} B_n(t) =\int _{0}^{t}I_n^{(k)}(u)\left( k \alpha _1+\frac{k(k-1)}{2}\sigma ^2(u)-\lambda + \beta _k +\frac{\gamma }{\sigma ^2(u)}\right) du. \end{aligned}$$

Clearly, with \(X_n = I_n^{(k)}\) we have \(M_n = X_n -B_n\) a local martingale, where

$$\begin{aligned} M_n (t)&= \int _{0}^{t}k\sigma (u)\rho _1 I_n^{(k)}(u)dM(u)+ \frac{k\sqrt{1-\rho _1^2}}{n}\sum _{i=1}^{n}\int _{0}^{t}\sigma ^3(u)S_i^k(u)dW_i(u)\\&\quad + \sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^k(u)(e^{k\alpha _2 x}-1)\left( \frac{\sigma ^2(u)}{n}+\frac{x}{n^2}\right) \tilde{N}_i(du, dx)\\&\quad +\frac{1}{n^2}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^k(u)x\tilde{N}_j(du, dx). \end{aligned}$$

Next, we define \(A_n(t) = [M_n, M_n](t)\). By construction, clearly \(A_n(t)-A_n(s)\) is non-negative definite for \(t \ge s \ge 0\). By Doob–Meyer decomposition \(M_n^2-A_n\) is a local martingale. Since the jumps occur at distinct times almost surely, we have

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|X_n(t)-X_n(t-)|^2\right]&= {{\mathbb {E}}}\left[ \sup _{1\le i\le n} \sup _{t\le T}\left( \frac{1}{n}(\sigma ^2(t)S_i^k(t)-\sigma ^2(t-)S_i^k(t-))\right) ^2\right] \\&\le \frac{C^2}{n^2}{{\mathbb {E}}}\left[ \sup _{1\le i\le n} \sup _{t\le T}S_i^{2k}(t)\right] . \end{aligned}$$

Since the jump sizes \(|A_n(t)-A_n(t-)|\) are essentially same as \(|X_n(t)-X_n(t-)|^2\),

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|A_n(t)-A_n(t-)|\right] \le \frac{C^2}{n^2}{{\mathbb {E}}}\left[ \sup _{1\le i\le n} \sup _{t\le T}S_i^{2k}(t)\right] . \end{aligned}$$

Assumptions of this theorem (\(E[S_i(0)^{4k}] < \infty \), \(\int _{{\mathbb {R}}} e^{4k \alpha _2 x} \nu (dx) < \infty \), and for \(t \in [0,T]\), \(|\sigma (t)|^2\le C\)) imply (see Hambly and Vaicenavicius 2015) that for \(t\in [0,T]\), \(E[S_i(t)^k]<\infty \). Hence by Hambly and Vaicenavicius (2015) (Lemma 4.3) we obtain

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|X_n(t)-X_n(t-)|^2\right] \rightarrow 0, \end{aligned}$$

and

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|A_n(t)-A_n(t-)|^2\right] \rightarrow 0, \end{aligned}$$

as \(n\rightarrow \infty \). Also, since \(B_n\) is continuous \(\lim _{n\rightarrow \infty }{{\mathbb {E}}}\left[ \sup _{t \le T } |B_n(t)-B_n(t-)|^2\right] = 0\). We observe that

$$\begin{aligned}&B_n(t) -\int _{0}^{t}b(X_n(u))du \\&\quad =\int _{0}^{t}I_n^{(k)}(u)\left( k \alpha _1+\frac{k(k-1)}{2}\sigma ^2(u)-\lambda + \beta _k +\frac{\gamma }{\sigma ^2(u)} + \frac{\mu _k}{n\sigma ^2(u)}\right) du\\&\qquad -\int _{0}^{t}I_n^{(k)}(u)\left( k \alpha _1+\frac{k(k-1)}{2}\sigma ^2(u)-\lambda + \beta _k +\frac{\gamma }{\sigma ^2(u)}\right) dt\\&\quad =\frac{1}{n}\int _{0}^{t}\frac{\mu _k}{\sigma ^2(u)}I_n^{(k)}(u)du \; \rightarrow \; 0, \quad \text {in probability}, \end{aligned}$$

by Lemma 3.1 and the assumption of the theorem. Thus all the conditions except (3.6) are verified for Theorem 3.2. Next, we proceed to verify (3.6). We denote

$$\begin{aligned} G_n(t)&:= \frac{1}{n}\int _{0}^{t}k^2(1-\rho _1^2)\sigma ^4(u)I_n^{(2k)}(u)du \\ H_n^1(t)&:=\frac{1}{n^4}\sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_p^k(u)S_q^k(u)x^2N_i(du, dx),\\ H_n^2(t)&:=\frac{2}{n^3}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^{2k}(u)\sigma ^2(u)x(e^{k\alpha _2 x}-1)^2N_i(du, dx),\\ H_n^3(t)&:=\frac{1}{n^4}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^{2k}(u)x^2(e^{k\alpha _2 x}-1)^2N_i(du, dx),\\ H_n^4(t)&:= \frac{1}{n^2}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^{2k}(u)\sigma ^4(u)(e^{k\alpha _2 x}-1)^2N_i(du, dx),\\ H_n^5(t)&: = \frac{2}{n^4}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^{k}(u)S_j^{k}(u)x(e^{k\alpha _2 x}-1)N_j(du, dx),\\ H_n^6(t)&: = \frac{2}{n^3}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^{k}(u)S_j^{k}(u)\sigma ^2(u)x(e^{k\alpha _2 x}-1)N_j(du, dx). \end{aligned}$$

Consider

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}\left| A_n(t)-\int _{0}^{t}a(X_n(t))\right| ^2\right]&\le {{\mathbb {E}}}\left[ \left( \sup _{t\le T}|G_n(t)|+\sum _{i=1}^6 \sup _{t\le T}|H^i_n(t)| \right) ^2\right] \nonumber \\&\le 8{{\mathbb {E}}}\left[ \sup _{t\le T}|G_n(t)|^2\right] + 8 \sum _{i=1}^6 {{\mathbb {E}}}\left[ \sup _{t\le T}|H^i_n(t)|^2\right] . \end{aligned}$$
(5.1)

To verify (3.6), it is sufficient to show that \({{\mathbb {E}}}\left[ \sup _{t\le T}|G_n(t)|^2\right] \) and \({{\mathbb {E}}}\left[ \sup _{t\le T}|H_n^i(t)|^2\right] \) for \(1\le i \le 6\) converge to 0 as \(n\rightarrow \infty \). Clearly, by Lemma 3.1 and boundedness of \(\sigma ^2\), we obtain

$$\begin{aligned}&{{\mathbb {E}}}\left[ \sup _{t\le T}|G_n(t)|^2\right] \\&\quad = \frac{k^4(1-\rho _1^2)^2}{n}{{\mathbb {E}}}\left[ \sup _{t\le T}\left| \int _{0}^{t}\frac{\sigma ^4(u)}{\sqrt{n}}I_n^{(2k)}(u)du\right| ^2\right] \rightarrow 0, \quad \text {as} \quad n \rightarrow \infty . \end{aligned}$$

Also,

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|H^1_n(t)|^2\right]&= {{\mathbb {E}}}\left[ H_n^1(T)^2\right] = \frac{1}{n^6}{{\mathbb {E}}}\left[ \left( \sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{r=1}^{N^1(T)}S_p^k(\tau _r^1)S_q^k(\tau _r^1)({\mathcal {J}}_r^1)^2\right) ^2\right] \\&=\frac{1}{n^4}{{\mathbb {E}}}\left[ \left( \sum _{r=1}^{N^1(T)}S_1^{2k}(\tau _r^1)({\mathcal {J}}_r^1)^2\right) ^2\right] \\&\le \frac{1}{n^4}{{\mathbb {E}}}\left[ N^1(T)\sum _{r=1}^{N^1(T)}S_1^{4k}(\tau _r^1)({\mathcal {J}}_r^1)^4\right] \\&\le \frac{1}{n^4}\sum _{N=1}^{\infty }N^2\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^4]{\mathbb {P}}(N^1(T)=N)\\&\le \frac{1}{n^4}\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^4]{{\mathbb {E}}}[N^1(T)^2] \rightarrow 0, \quad \text {as} \quad n \rightarrow \infty .\\ {{\mathbb {E}}}\left[ \sup _{t\le T}|H_n^2(t)|^2\right]&= {{\mathbb {E}}}\left[ H_n^2(T)^2\right] \\&=\frac{4}{n^6}{{\mathbb {E}}}\left[ \left( \sum _{i=1}^{n}\int _{0}^{T}\int _{{\mathbb {R}}}S_i^{2k}(u)\sigma ^2(u)x(e^{k\alpha _2 x}-1)^2N_i(du, dx)\right) ^2\right] \\&\le \frac{4C}{n^5}{{\mathbb {E}}}\left[ \sum _{i=1}^{n}\left( \int _{0}^{T}\int _{{\mathbb {R}}}S_i^{2k}(u)x(e^{k\alpha _2 x}-1)^2N_i(du, dx)\right) ^2\right] \\&\le \frac{4C}{n^4}{{\mathbb {E}}}\left[ N^1(T)\sum _{j=1}^{N^1(T)}S_1^{4k}(\tau _j^1)({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^4\right] \\&\le \frac{4C}{n^4}\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^4]{{\mathbb {E}}}[N^1(T)^2] \rightarrow 0,\\&\quad \text {as} \quad n \rightarrow \infty .\\ {{\mathbb {E}}}\left[ \sup _{t\le T}|H_n^3(t)|^2\right]&= {{\mathbb {E}}}\left[ H_n^3(T)^2\right] \\&={{\mathbb {E}}}\left[ \left( \frac{1}{n^4}\sum _{i=1}^{n}\int _{0}^{T}\int _{{\mathbb {R}}}S_i^{2k}(u)x^2(e^{k\alpha _2 x}-1)^2N_i(du, dx)\right) ^2\right] \\&\le \frac{1}{n^7}{{\mathbb {E}}}\left[ \sum _{i=1}^{n}\left( \int _{0}^{T}\int _{{\mathbb {R}}}S_i^{2k}(u)x^2(e^{k\alpha _2 x}-1)^2N_i(du, dx)\right) ^2\right] \\&\le \frac{1}{n^7}{{\mathbb {E}}}\left[ \sum _{i=1}^{n}\left( \sum _{j=1}^{N^i(T)}S_i^{2k}(\tau _j^i)x^2(e^{k\alpha _2 {\mathcal {J}}_j^i}-1)^2\right) ^2\right] \\&\le \frac{1}{n^6}\sum _{N=1}^{\infty }N^2\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^4(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^4]\\&\quad {\mathbb {P}}(N^1(T)=N)\\&\le \frac{1}{n^6}\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^4(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^4]{{\mathbb {E}}}[N^1(T)^2] \rightarrow 0, \\&\quad \text {as} \quad n \rightarrow \infty . \end{aligned}$$

In a similar procedure as in the case of \(H_n^2(t)\), we can show

$$\begin{aligned}&{{\mathbb {E}}}\left[ \sup _{t\le T}|H_n^4(t)|^2\right] \le \frac{C}{n^3}\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^4]{{\mathbb {E}}}[N^1(T)^2] \rightarrow 0, \\&\quad \text {as} \quad n \rightarrow \infty . \end{aligned}$$

Next,

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|H_n^5(t)|^2\right]&= {{\mathbb {E}}}\left[ H_n^5(T)^2\right] \\&={{\mathbb {E}}}\left[ \left( \frac{2}{n^4}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{T}\int _{{\mathbb {R}}}S_i^{k}(u)S_j^{k}(u)x(e^{k\alpha _2 x}-1)N_j(du, dx)\right) ^2\right] \\&\le \frac{4}{n^8}{{\mathbb {E}}}\left[ n^2\sum _{i=1}^{n}\sum _{j=1}^{n}\left( \int _{0}^{T}\int _{{\mathbb {R}}}S_i^{k}(u)S_j^{k}(u)x(e^{k\alpha _2 x}-1)N_j(du, dx)\right) ^2\right] \\&\le \frac{4}{n^4}{{\mathbb {E}}}\left[ N^1(T)\sum _{j=1}^{N^1(T)}S_1^{4k}(\tau _r^1)({\mathcal {J}}_r^1)^2(e^{k\alpha _2 {\mathcal {J}}_r^1}-1)^2\right] \\&\le \frac{4}{n^4}\sum _{N=1}^{\infty }N^2\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^2]{\mathbb {P}}(N^1(T)=N)\\&\le \frac{4}{n^4}\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^2]{{\mathbb {E}}}[N^1(T)^2] \rightarrow 0,\\&\quad \text {as} \quad n \rightarrow \infty . \end{aligned}$$

Finally,

$$\begin{aligned} {{\mathbb {E}}}\left[ \sup _{t\le T}|H_n^6(t)|^2\right]&= {{\mathbb {E}}}\left[ H_n^6(T)^2\right] \\&={{\mathbb {E}}}\left[ \left( \frac{2}{n^3}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{T}\int _{{\mathbb {R}}}S_i^{k}(u)S_j^{k}(u)\sigma ^2(u)x(e^{k\alpha _2 x}-1)N_j(du, dx)\right) ^2\right] \\&\le \frac{4C}{n^6}{{\mathbb {E}}}\left[ n^2\sum _{i=1}^{n}\sum _{j=1}^{n}\left( \int _{0}^{T}\int _{{\mathbb {R}}}S_i^{k}(u)S_j^{k}(u)x(e^{k\alpha _2 x}-1)N_j(du, dx)\right) ^2\right] \\&\le \frac{4C}{n^2}{{\mathbb {E}}}\left[ N^1(T)\sum _{j=1}^{N^1(T)}S_1^{4k}(\tau _r^1)({\mathcal {J}}_r^1)^2(e^{k\alpha _2 {\mathcal {J}}_r^1}-1)^2\right] \\&\le \frac{4C}{n^2}\sum _{N=1}^{\infty }N^2\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^2]{\mathbb {P}}(N^1(T)=N)\\&\le \frac{4C}{n^2}\left( \sup _{t\le T}{{\mathbb {E}}}[S_1^{4k}(t)]\right) {{\mathbb {E}}}[({\mathcal {J}}_j^1)^2(e^{k\alpha _2 {\mathcal {J}}_j^1}-1)^2]{{\mathbb {E}}}[N^1(T)^2]\rightarrow 0, \\&\quad \text {as} \quad n \rightarrow \infty . \end{aligned}$$

Combining all these results we obtain from (5.1) that \({{\mathbb {E}}}\left[ \sup _{t\le T}\left| A_n(t)-\int _{0}^{t}a(X_n(t))\right| ^2\right] \rightarrow 0\) as \(n \rightarrow \infty \). Hence (3.6) is verified and consequently all the assumptions in Theorem 3.2 are verified. Hence the proof is complete. \(\square \)

B Appendix: Proof of Lemma 3.4

Proof

By (3.7) jumps of \(\Pi _n(t)\) are same as jumps of \(\sqrt{n}I_n(t)\). Hence,

$$\begin{aligned}&{{\mathbb {E}}}\left[ \sup _{t\le T}|X_n(t)-X_n(t-)|^2\right] = {{\mathbb {E}}}\left[ \sup _{t\le T}\left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}(\sigma ^2(t)S_i(t)-\sigma ^2(t-)S_i(t-))\right) ^2\right. \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \left. +\left( \frac{\xi ^2}{n}\sum _{i=1}^{n}(\sigma ^2(t)S_i^2(t)-\sigma ^2(t-)S_i^2(t-))\right) ^2 \right] \\&\quad \le C{{\mathbb {E}}}\left[ \sup _{t\le T}\left( \left( \frac{1}{\sqrt{n}}\sum _{i=1}^{n}(S_i(t)-S_i(t-))\right) ^2 +\left( \frac{\xi ^2}{n}\sum _{i=1}^{n}(S_i^2(t)-S_i^2(t-))\right) ^2\right) \right] \\&\quad \le \frac{C}{n}{{\mathbb {E}}}\left[ \sup _{t\le T}\sum _{i=1}^{n}(S_i(t)-S_i(t-))^2\right] + \frac{C\xi ^4}{n^2}{{\mathbb {E}}}\left[ \sup _{t\le T}\sum _{i=1}^{n}(S_i^2(t)-S_i^2(t-))^2\right] \\&\quad \le \frac{C}{n}{{\mathbb {E}}}\left[ \sup _{1\le i\le n}\sup _{t\le T}S_i^2(t)\right] + \frac{C\xi ^4}{n^2}{{\mathbb {E}}}\left[ \sup _{1\le i\le n}\sup _{t\le T}S_i^4(t)\right] , \end{aligned}$$

where we have used repeatedly the fact that no two jumps occur at the same time almost surely. Hence (3.14) is proved. Proof of (3.15) is similar and is skipped here.

We proceed to prove (3.16).

  1. (i)

    Case: \(i=j=1\). We define

    $$\begin{aligned} U_n(t)&:= A_n^{11} -\int _{0}^{t}a_{11}(X_n(u))du = G_n^{11}+H_n^{11} -\int _{0}^{t}a_{11}(X_n(u))du\\&= -\xi ^2\int _{0}^{t}\sigma ^2(u) I_n^{(2)}(u) du\\&\quad + \frac{1}{n^3}\sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_p(u)S_q(u)x^2N_i(du, dx)\\&\quad +\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^2(u)(e^{\alpha _2 x}-1)^2\left( \frac{\sigma ^2(u)}{\sqrt{n}}+ \frac{x}{n^{\frac{3}{2}}}\right) ^2N_i(du, dx)\\&\quad + \frac{2}{n^{\frac{3}{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j(u)x(e^{\alpha _2 x}{-}1)\left( \frac{\sigma ^2(u)}{\sqrt{n}}{+} \frac{x}{n^{\frac{3}{2}}}\right) N_j(du, dx). \end{aligned}$$

    After simplification of the above expression, and using (3.11), we obtain the following expression for \(U_n(t)\).

    $$\begin{aligned} U_n(t)&= \frac{1}{n^3}\sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_p(u)S_q(u)x^2N_i(du, dx) \nonumber \\&\quad +\frac{1}{n^3}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^2(u)x^2(e^{\alpha _2 x}-1)^2N_i(du, dx) \nonumber \\&\quad +\frac{1}{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^2(u)\sigma ^4(u)(e^{\alpha _2 x}-1)^2\tilde{N}_i(du, dx) \nonumber \\&\quad +\frac{2}{n^2}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i^2(u)\sigma ^2(u)x(e^{\alpha _2 x}-1)^2N_i(du, dx) \nonumber \\&\quad + \frac{2}{n^4}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j(u)x^2(e^{\alpha _2 x}-1)N_j(du, dx) \nonumber \\&\quad + \frac{2}{n^2}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j(u)\sigma ^2(u)x(e^{\alpha _2 x}-1)N_j(du, dx). \end{aligned}$$
    (6.1)

    A similar proof for Theorem 3.3 (in particular, the analysis related to \(\sup _{t \le T} |H_n^i(t)|^2\), for \(i=1,2,3,4,5,6\)) can be used to show that for \(0 \le t \le T\), each of the terms in the right hand side of (6.1) is converging to 0 in probability as \(n \rightarrow \infty \). Consequently we conclude that \({{\mathbb {E}}}[\sup _{t \le T} |U_n(t)|^2]\rightarrow 0\) as \(n \rightarrow \infty \).

  2. (ii)

    Case: \(i=1\), \(j=2\). In this case clearly \(\int _{0}^{t}a_{12}(X_n(u))du =0\).

    $$\begin{aligned}&A_n^{12}(t) - \int _{0}^{t}a_{12}(X_n(u))du = G_n^{12}(t) + H_n^{12}(t)- \int _{0}^{t}a_{12}(X_n(u))du\\&\quad = \frac{\xi ^2}{n^{\frac{7}{2}}}\sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_p(u)S_q^2(u)x^2N_i(du, dx)\\&\qquad + \frac{\xi ^2}{n^{\frac{3}{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j^2(u)x(e^{2\alpha _2 x}-1)\left( \frac{\sigma ^2(u)}{n}+ \frac{x}{n^2}\right) N_j(du, dx) \\&\qquad +\frac{\xi ^2}{n^2}\sum _{i=1}^{n}\sum _{j=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j^2(u)x(e^{\alpha _2 x}-1)\left( \frac{\sigma ^2(u)}{\sqrt{n}}+ \frac{x}{n^{\frac{3}{2}}}\right) N_j(du, dx) \\&\qquad + \xi ^2\sum _{i=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i^3(u)(e^{2\alpha _2 x}-1)(e^{\alpha _2 x}-1)\left( \frac{\sigma ^2(u)}{\sqrt{n}}+ \frac{x}{n^{\frac{3}{2}}}\right) \\&\qquad \times \,\left( \frac{\sigma ^2(u)}{n}+ \frac{x}{n^2}\right) N_i(du, dx), \end{aligned}$$

    and this can be simplified to

    $$\begin{aligned}&A_n^{12}(t) - \int _{0}^{t}a_{12}(X_n(u))du =\frac{\xi ^2}{n^{\frac{7}{2}}}\sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_p(u)S_q^2(u)x^2N_i(du, dx)\\&\qquad + \frac{2\xi ^2}{n^{\frac{5}{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j^2(u)\sigma ^2(u)x(e^{2\alpha _2 x}-1)N_j(du, dx) \\&\qquad + \frac{2\xi ^2}{n^{\frac{7}{2}}}\sum _{i=1}^{n}\sum _{j=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i(u)S_j^2(u)x^2(e^{2\alpha _2 x}-1)N_j(du, dx)\\&\qquad + \frac{\xi ^2}{n^{\frac{3}{2}}}\sum _{i=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i^3(u)\sigma ^4(u)(e^{2\alpha _2 x}-1)(e^{\alpha _2 x}-1)N_i(du, dx)\\&\qquad + \frac{2\xi ^2}{n^{\frac{5}{2}}}\sum _{i=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i^3(u)\sigma ^2(u)x(e^{2\alpha _2 x}-1)(e^{\alpha _2 x}-1)N_i(du, dx)\\&\qquad +\frac{\xi ^2}{n^{\frac{7}{2}}}\sum _{i=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i^3(u)x^2(e^{2\alpha _2 x}-1)(e^{\alpha _2 x}-1)N_i(du, dx). \end{aligned}$$

    Once again, a similar procedure as in Theorem 3.3 (in particular, the analysis related to \(\sup _{t \le T} |H_n^i(t)|^2\), for \(i=1,2,3,4,5,6\)) can be used to show that for \(0 \le t \le T\), each of the terms in the right hand side of the above expression is converging to 0 in probability as \(n \rightarrow \infty \).

  3. (iii)

    Case: \(i=j=2\). We have \(\int _{0}^{t}a_{22}(X_n(u))du = \xi ^4\int _{0}^{t}4\sigma ^2(u)(I_n^{(2)}(u))^2du\).

    $$\begin{aligned}&A_n^{22}(t) - \int _{0}^{t}a_{22}(X_n(u))du = G_n^{22}(t) + H_n^{22}(t)- \int _{0}^{t}a_{22}(X_n(u))du\\&\quad =\xi ^4\int _{0}^{t}4\sigma ^2(u)(I_n^{(2)}(u))^2du -\xi ^4\int _{0}^{t}4\sigma ^2(u)(I_n^{(2)}(u))^2du\\&\qquad +\frac{\xi ^4}{n^4}\sum _{p=1}^{n}\sum _{q=1}^{n}\sum _{i=1}^{n}\int _{0}^{t}\int _{{\mathbb {R}}}S_q^2(u)S_q^2(u)x^2N_i(du, dx) \\&\qquad +\xi ^4\sum _{i=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i^4(u-)(e^{2\alpha _2 x}-1)^2\left( \frac{\sigma ^2(u)}{n}+ \frac{x}{n^2}\right) ^2N_i(du, dx)\\&\qquad +\frac{2\xi ^4}{n^2}\sum _{i=1}^{n}\sum _{j=1}^{n} \int _{0}^{t}\int _{{\mathbb {R}}}S_i^2(u)S_j^2(u)x(e^{2\alpha _2 x}-1)\left( \frac{\sigma ^2(u)}{n}+ \frac{x}{n^2}\right) N_j(du, dx). \end{aligned}$$

    After expanding the above expression, a similar procedure as in Theorem 3.3 (in particular, the analysis related to \(\sup _{t \le T} |H_n^i(t)|^2\), for \(i=1,2,3,4,5,6\)) can be implemented to show that for \(0 \le t \le T\), each of the terms in the right hand side of the above expression is converging to 0 in probability as \(n \rightarrow \infty \).

Combining all the above three cases we complete the proof of (3.16). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Issaka, A., SenGupta, I. Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index. Ann Finance 13, 401–434 (2017). https://doi.org/10.1007/s10436-017-0302-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10436-017-0302-3

Keywords

JEL Classification

Navigation