Skip to main content

Advertisement

Log in

Cerebrospinal Fluid Flow Dynamics in the Central Nervous System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Cine-phase-contrast-MRI was used to measure the three-dimensional cerebrospinal fluid (CSF) flow field inside the central nervous system (CNS) of a healthy subject. Image reconstruction and grid generation tools were then used to develop a three-dimensional fluid–structure interaction model of the CSF flow inside the CNS. The CSF spaces were discretized using the finite-element method and the constitutive equations for fluid and solid motion solved in ADINA-FSI 8.6. Model predictions of CSF velocity magnitude and stroke volume were found to be in excellent agreement with the experimental data. CSF pressure gradients and amplitudes were computed in all regions of the CNS. The computed pressure gradients and amplitudes closely match values obtained clinically. The highest pressure amplitude of 77 Pa was predicted to occur in the lateral ventricles. The pressure gradient between the lateral ventricles and the lumbar region of the spinal canal did not exceed 132 Pa (~1 mmHg) at any time during the cardiac cycle. The pressure wave speed in the spinal canal was predicted and found to agree closely with values previously reported in the literature. Finally, the forward and backward motion of the CSF in the ventricles was visualized, revealing the complex mixing patterns in the CSF spaces. The mathematical model presented in this article is a prerequisite for developing a mechanistic understanding of the relationships among vasculature pulsations, CSF flow, and CSF pressure waves in the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIGURE 1
FIGURE 2
FIGURE 3
FIGURE 4
FIGURE 5
FIGURE 6
FIGURE 7
FIGURE 8
FIGURE 9
FIGURE 10

Similar content being viewed by others

References

  1. Alperin, N., E. M. Vikingstad, B. Gomez-Anson, and D. N. Levin. Hemodynamically independent analysis of cerebrospinal fluid and brain motion observed with dynamic phase contrast MRI. Magn. Reson. Med. 35:741–754, 1996.

    Article  CAS  PubMed  Google Scholar 

  2. Baledent, O., M. C. Henry-Feugeas, and I. Idy-Peretti. Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation. Invest. Radiol. 36:368–377, 2001.

    Article  CAS  PubMed  Google Scholar 

  3. Barshes, N., A. Demopoulos, and H. H. Engelhard. Anatomy and physiology of the leptomeninges and CSF space. In: Leptomeningeal Metastases, edited by L. E. Abrey, M. C. Chamberlain, and H. H. Engelhard. New York: Springer, 2005, pp. 1–16.

    Chapter  Google Scholar 

  4. Bateman, G. A. Vascular compliance in normal pressure hydrocephalus. AJNR Am. J. Neuroradiol. 21:1574–1585, 2000.

    CAS  PubMed  Google Scholar 

  5. Bathe, K. J. Finite Element Procedures. Upper Saddle River: Prentice Hall, p. 1037, 1996.

    Google Scholar 

  6. Belytschko, T., W. K. Liu, and B. Moran. Nonlinear Finite Elements for Continua and Structures, xvi ed. New York: Wiley, p. 650, 2000.

    Google Scholar 

  7. Bertram, C. D., A. R. Brodbelt, and M. A. Stoodley. The origins of syringomyelia: numerical models of fluid/structure interactions in the spinal cord. J. Biomech. Eng. 127:1099–1109, 2005.

    Article  CAS  PubMed  Google Scholar 

  8. Bhadelia, R. A., A. R. Bogdan, R. F. Kaplan, and S. M. Wolpert. Cerebrospinal fluid pulsation amplitude and its quantitative relationship to cerebral blood flow pulsations: a phase-contrast MR flow imaging study. Neuroradiology 39:258–264, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Carpenter, P. W., K. Berkouk, and A. D. Lucey. Pressure wave propagation in fluid-filled co-axial elastic tubes. Part 2: mechanisms for the pathogenesis of syringomyelia. J. Biomech. Eng. 125:857–863, 2003.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, S., K. Tan, and L. E. Bilston. The effects of the interthalamic adhesion position on cerebrospinal fluid dynamics in the cerebral ventricles. J. Biomech. 43:579–582, 2010.

    Article  PubMed  Google Scholar 

  11. Czosnyka, M., Z. Czosnyka, S. Momjian, and J. D. Pickard. Cerebrospinal fluid dynamics. Physiol. Meas. 25:R51–R76, 2004.

    Article  PubMed  Google Scholar 

  12. Davson, H. Formation and drainage of the cerebrospinal fluid. In: Hydrocephalus, edited by K. Shapiro, A. Marmarou, and H. Portnoy. New York: Raven Press, 1984, pp. 3–40.

    Google Scholar 

  13. Ellington, E., and G. Margolis. Block of arachnoid villus by subarachnoid hemorrhage. J. Neurosurg. 30:651–657, 1969.

    Article  CAS  PubMed  Google Scholar 

  14. Enzmann, D. R., and N. J. Pelc. Normal flow patterns of intracranial and spinal cerebrospinal fluid defined with phase-contrast cine MR imaging. Radiology 178:467–474, 1991.

    CAS  PubMed  Google Scholar 

  15. Fin, L., and R. Grebe. Three dimensional modeling of the cerebrospinal fluid dynamics and brain interactions in the aqueduct of sylvius. Comput. Methods Biomech. 6:163–170, 2003.

    Article  Google Scholar 

  16. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues, xviii ed. New York: Springer-Verlag, p. 568, 1993.

    Google Scholar 

  17. Greitz, D. Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg. Rev. 27:145–167, 2004.

    PubMed  Google Scholar 

  18. Greitz, D., K. Ericson, and O. Flodmark. Pathogenesis and mechanics of spinal cord cysts—a new hypothesis based on magnetic resonance studies of cerebrospinal fluid dynamics. Int. J. Neuroradiol. 5:61–78, 1999.

    Google Scholar 

  19. Greitz, D., A. Franck, and B. Nordell. On the pulsatile nature of intracranial and spinal CSF-circulation demonstrated by MR imaging. Acta Radiol. 34:321–328, 1993.

    CAS  PubMed  Google Scholar 

  20. Greitz, D., J. Hannerz, T. Rahn, H. Bolander, and A. Ericsson. MR imaging of cerebrospinal fluid dynamics in health and disease on the vascular pathogenesis of communicating hydrocephalus and benign intracranial hypertension. Acta Radiol. 35:204–211, 1994.

    CAS  PubMed  Google Scholar 

  21. Gupta, S., M. Soellinger, P. Boesiger, D. Poulikakos, and V. Kurtcuoglu. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J. Biomech. Eng. 131:1–11, 2009.

    Article  Google Scholar 

  22. Henry-Feugeas, M. C., I. Idy-Peretti, O. Baledent, A. Poncelet-Didon, G. Zannoli, J. Bittoun, and E. Schouman-Claeys. Origin of subarachnoid cerebrospinal fluid pulsations: a phase-contrast MR analysis. Magn. Reson. Imaging 18:387–395, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, T. Y., H. W. Chung, M. Y. Chen, L. H. Giiang, S. C. Chin, C. S. Lee, C. Y. Chen, and Y. J. Liu. Supratentorial cerebrospinal fluid production rate in healthy adults: quantification with two-dimensional cine phase-contrast MR imaging with high temporal and spatial resolution. Radiology 233:603–608, 2004.

    Article  PubMed  Google Scholar 

  24. Jacobson, E. E., D. F. Fletcher, M. K. Morgan, and I. H. Johnston. Fluid dynamics of the cerebral aqueduct. Pediatr. Neurosurg. 24:229–236, 1996.

    Article  CAS  PubMed  Google Scholar 

  25. Kalata, W., B. A. Martin, J. N. Oshinski, M. Jerosch-Herold, T. J. Royston, and F. Loth. MR measurement of cerebrospinal fluid velocity wave speed in the spinal canal. IEEE Trans. Biomed. Eng. 56:1765–1768, 2009.

    PubMed  Google Scholar 

  26. Kroin, J. S., A. Ali, M. York, and R. D. Penn. The distribution of medication along the spinal canal after chronic intrathecal administration. Neurosurgery 33:226–230, 1993 (discussion 230).

    Article  CAS  PubMed  Google Scholar 

  27. LaVan, D. A., T. McGuire, and R. Langer. Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21:1184–1191, 2003.

    Article  CAS  PubMed  Google Scholar 

  28. Levine, D. N. The pathogenesis of normal pressure hydrocephalus: a theoretical analysis. Bull. Math. Biol. 61:875–916, 1999.

    Article  CAS  PubMed  Google Scholar 

  29. Linninger, A. A., M. R. Somayaji, M. Mekarski, and L. Zhang. Prediction of convection-enhanced drug delivery to the human brain. J. Theor. Biol. 250:125–138, 2008.

    Article  CAS  PubMed  Google Scholar 

  30. Linninger, A. A., B. Sweetman, and R. Penn. Normal and hydrocephalic brain dynamics: the role of reduced cerebrospinal fluid reabsorption in ventricular enlargement. Ann. Biomed. Eng. 37:1434–1447, 2009.

    Article  PubMed  Google Scholar 

  31. Linninger, A. A., M. Xenos, D. C. Zhu, M. R. Somayaji, S. Kondapalli, and R. D. Penn. Cerebrospinal fluid flow in the normal and hydrocephalic human brain. IEEE Trans. Biomed. Eng. 54:291–302, 2007.

    Article  PubMed  Google Scholar 

  32. Lorenzo, A. V., L. K. Page, and G. V. Watters. Relationship between cerebrospinal fluid formation, absorption and pressure in human hydrocephalus. Brain 93:679–692, 1970.

    Article  CAS  PubMed  Google Scholar 

  33. Loth, F., M. A. Yardimci, and N. Alperin. Hydrodynamic modeling of cerebrospinal fluid motion within the spinal cavity. J. Biomech. Eng. 123:71–79, 2001.

    Article  CAS  PubMed  Google Scholar 

  34. Martins, A. N., J. K. Wiley, and P. W. Myers. Dynamics of the cerebrospinal fluid and the spinal dura mater. J. Neurol. Neurosurg. Psychiatry 35:468–473, 1972.

    Article  CAS  PubMed  Google Scholar 

  35. Nieuwenhuys, R., J. Voogd, and Cv Huijzen. The Human Central Nervous System: A Synopsis and Atlas, xii ed. New York: Springer-Verlag, p. 437, 1988.

    Google Scholar 

  36. Pena, A., M. D. Bolton, H. Whitehouse, and J. D. Pickard. Effects of brain ventricular shape on periventricular biomechanics: a finite-element analysis. Neurosurgery 45:107–116, 1999 (discussion 116–118).

    Article  CAS  PubMed  Google Scholar 

  37. Pena, A., N. G. Harris, M. D. Bolton, M. Czosnyka, and J. D. Pickard. Communicating hydrocephalus: the biomechanics of progressive ventricular enlargement revisited. Acta Neurochir. Suppl. 81:59–63, 2002.

    CAS  PubMed  Google Scholar 

  38. Penn, R. D., M. C. Lee, A. A. Linninger, K. Miesel, S. N. Lu, and L. Stylos. Pressure gradients in the brain in an experimental model of hydrocephalus. J. Neurosurg. 102:1069–1075, 2005.

    Article  PubMed  Google Scholar 

  39. Saltzman, W. M., and W. L. Olbricht. Building drug delivery into tissue engineering. Nat. Rev. Drug Discov. 1:177–186, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Segal, M. B. Transport of nutrients across the choroid plexus. Microsc. Res. Tech. 52:38–48, 2001.

    Article  CAS  PubMed  Google Scholar 

  41. Sherwood, L. Fundamentals of Physiology: A Human Perspective. St. Paul/Minneapolis: West Pub. Co., p. 572, 1995.

    Google Scholar 

  42. Silbernagl, S., and A. Despopoulos. Color Atlas of Physiology. New York: Thieme, p. 441, 2009.

    Google Scholar 

  43. Silverberg, G. D., G. Heit, S. Huhn, R. A. Jaffe, S. D. Chang, H. Bronte-Stewart, E. Rubenstein, K. Possin, and T. A. Saul. The cerebrospinal fluid production rate is reduced in dementia of the Alzheimer’s type. Neurology 57:1763–1766, 2001.

    CAS  PubMed  Google Scholar 

  44. Sussman, T., and K. J. Bathe. A finite-element formulation for nonlinear incompressible elastic and inelastic analysis. Comput. Struct. 26:357–409, 1987.

    Article  Google Scholar 

  45. Thron, A. K., C. Rossberg, and A. Mironov. Vascular Anatomy of the Spinal Cord: Neuroradiological Investigations and Clinical Syndromes. New York: Springer-Verlag, p. 114, 1988.

    Google Scholar 

  46. Upton, M. L., and R. O. Weller. The morphology of cerebrospinal fluid drainage pathways in human arachnoid granulations. J. Neurosurg. 63:867–875, 1985.

    Article  CAS  PubMed  Google Scholar 

  47. Wagshul, M. E., J. J. Chen, M. R. Egnor, E. J. McCormack, and P. E. Roche. Amplitude and phase of cerebrospinal fluid pulsations: experimental studies and review of the literature. J. Neurosurg. 104:810–819, 2006.

    Article  PubMed  Google Scholar 

  48. White, D. N., K. C. Wilson, G. R. Curry, and R. J. Stevenson. The limitation of pulsatile flow through the aqueduct of Sylvius as a cause of hydrocephalus. J. Neurol. Sci. 42:11–51, 1979.

    Article  CAS  PubMed  Google Scholar 

  49. Yaksh, T. L. Spinal Drug Delivery, xix ed. New York: Elsevier, p. 614, 1999.

    Google Scholar 

  50. Yallapragada, N., and N. Alperin. Characterization of spinal canal hydrodynamics and compliance using bond graph technique and CSF flow measurements by MRI. In: Proceeding of the International Society for Magnetic Resonance in Medicine, vol. 11, 2658, 2004.

  51. Zhang, X., and J. F. Greenleaf. Noninvasive generation and measurement of propagating waves in arterial walls. J. Acoust. Soc. Am. 119:1238–1243, 2006.

    Article  PubMed  Google Scholar 

  52. Zhu, D. C., M. Xenos, A. A. Linninger, and R. D. Penn. Dynamics of lateral ventricle and cerebrospinal fluid in normal and hydrocephalic brains. J. Magn. Reson. Imaging 24:756–770, 2006.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge NIH for their partial financial support of this project, NIH-5R21EB004956. We are grateful to Materialise Inc., for providing a free research license of the Mimics image reconstruction software. Dr. Richard Penn and Dr. David Zhu are also acknowledged for the collaboration in the original acquisition of the CINE-MRI data as described in Zhu et al. 52

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Linninger.

Additional information

Associate Editor Stefan Duma oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sweetman, B., Linninger, A.A. Cerebrospinal Fluid Flow Dynamics in the Central Nervous System. Ann Biomed Eng 39, 484–496 (2011). https://doi.org/10.1007/s10439-010-0141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0141-0

Keywords

Navigation