Skip to main content
Log in

A Mechanical Model for CCK-Induced Acalculous Gallbladder Pain

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study investigates the potential correlation between acalculous biliary pain and mechanical stress during the bile-emptying phase. This study is built on the previously developed mathematical model used to estimate stress in the gallbladder wall during emptying [Li, W. G., X. Y. Luo, et al. Comput. Math. Methods Med. 9(1):27–45, 2008]. Although the total stress was correctly predicted using the previous model, the contribution from patient-specific active stress induced by the cholecystokinin (CCK) test was overlooked. In this article, we evaluate both the active and passive components of pressure in a gallbladder, which undergoes isotonic refilling, isometric contraction and emptying during the infusion of CCK. The pressure is estimated from in vivo ultrasonographical scan measurements of gallbladder emptying during CCK tests, assuming that the gallbladder is a thin ellipsoidal membrane. The passive stress is caused by the volume and shape changes during refilling at the gallbladder basal pressure, whereas the active stress arises from the pressure rise during the isometric gallbladder contraction after the CCK infusion. The effect on the stress estimates of the gallbladder to the liver is evaluated to be small by comparing numerical simulations of a gallbladder model with and without a rigid ‘flat top’ boundary. The model was applied to 51 subjects, and the peak total stress was found to have a strong correlation with the pain stimulated by CCK, as measured by the patient pain score questionnaires. Consistent with our previous study for a smaller sample, it is found that the success rate in predicting of CCK-induced pain is over 75%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Almkvist, G., and B. Berndt. Gauss, Landen, Ramanujan, the arithmeticgeometric mean, ellipses, π and the ladies diary. Am. Math. Mon. 95:585–608, 1988.

    Article  Google Scholar 

  2. Barlow, J., H. Gregersen, et al. Identification of the biomechanical factors associated with the perception of distension in the human esophagus. Am. J. Physiol. Gastrointest. Liver Physiol. 282(4):683–689, 2002.

    Google Scholar 

  3. Bathe, K. J. Finite Element Procedures. Englewood Cliffs, NJ: Prentice Hall, 1996.

  4. Beckingham, I. J. ABC of diseases of liver, pancreas, and biliary system: gallstone disease. Br. Med. J. 322(7278):91, 2001.

    Article  CAS  Google Scholar 

  5. Body, L., L. Højgaard, et al. Human gallbladder pressure and volume: validation of a new direct method for measurements of gallbladder pressure in patients with acute cholecystitis. Clin. Physiol. Funct. Imaging 16(2):145–156, 2008.

    Google Scholar 

  6. Brotschi, E., K. Crocker, et al. Effect of low extracellular calcium on gallbladder contractionin vitro. Dig. Dis. Sci. 34(3):360–366, 1989.

    Article  CAS  PubMed  Google Scholar 

  7. Chijiiwa, K., T. Yamasaki, et al. Direct contractile response of isolated gallbladder smooth muscle cells to cholecystokinin in patients with gallstones. J. Surg. Res. 56(5):434–438, 1994.

    Article  CAS  PubMed  Google Scholar 

  8. Claus, P., M. McLaughlin, et al. Estimation of active myocardial force development: a feasibility study in a potentially clinical setting. Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, September 17–21, 2003.

  9. Cozzolino, H., F. Goldstein, et al. The cystic duct syndrome. JAMA 185(12):920, 1963.

    CAS  PubMed  Google Scholar 

  10. Dodds, W. J., W. J. Hogan, et al. Motility of the biliary system. In: Handbook of Physiology: the Gastrointestinal System, Vol. 1, Section 6, Part 2(28), edited by S. G. Schultz. Betheda, Maryland: American Physiological Society, 1989, pp. 1055–1101.

  11. Drewes, A., H. Gregersen, et al. Experimental pain in gastroenterology: a reappraisal of human studies. Scand. J. Gastroenterol. 38(11):1115–1130, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Ferris, D., and J. Vibert. The common bile duct: significance of its diameter. Ann. Surg. 149(2):249–251, 1959.

    Article  CAS  PubMed  Google Scholar 

  13. Fuller, R. A., J. A. Kuhn, et al. Laparoscopic cholecystectomy for acalculous gallbladder disease. Proc. (Bayl. Univ. Med. Cent.) 13(4):331–333, 2000.

    Google Scholar 

  14. Gaensler, E. Quantitative determination of the visceral pain threshold in man. J. Clin. Invest. 30:406, 1951.

    Article  CAS  PubMed  Google Scholar 

  15. Gao, C., L. Arendt-Nielsen, et al. Sensory and biomechanical responses to ramp-controlled distension of the human duodenum. Am. J. Physiol. Gastrointest. Liver Physiol. 284(3):461, 2003.

    Google Scholar 

  16. Herman, I. P. Physics of the Human Body. Berlin: Springer, p. 214, 2007.

    Google Scholar 

  17. Herring, P., and S. Simpson. The pressure of bile secretion and the mechanism of bile absorption in obstruction of the bile duct. Proc. R. Soc. Lond., B, Biol. Sci. 79(535):517–532, 1907.

    Google Scholar 

  18. Hould, F. S., G. M. Fried, et al. Progesterone receptors regulate gallbladder motility. J. Surg. Res. 45(6):505–512, 1988.

    Article  CAS  PubMed  Google Scholar 

  19. Hunter, P., and B. Smaill. The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol. 52(2):101–164, 1988.

    Article  CAS  PubMed  Google Scholar 

  20. Ishizuka, J., M. Murakami, et al. Age-related changes in gallbladder contractility and cytoplasmic Ca2+ concentration in the guinea pig. Am. J. Physiol. Gastrointest. Liver Physiol. 264(4):624, 1993.

    Google Scholar 

  21. Lambert, R., and J. Ryan. Response to calcium of skinned gallbladder smooth muscle from newborn and adult guinea pigs. Pediatr. Res. 28(4):336, 1990.

    Article  CAS  PubMed  Google Scholar 

  22. Langley, G. B., and H. Sheppeard. The visual analogue scale: its use in pain measurement. Rheumatol. Int. 5(4):145–148, 1985.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, K., P. Biancani, et al. Calcium sources utilized by cholecystokinin and acetylcholine in the cat gallbladder muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 256(4):785, 1989.

    Google Scholar 

  24. Li, W. G., X. Y. Luo, et al. One-dimensional models of the human biliary system. J. Biomech. Eng.-Trans. ASME 129(2):164–173, 2007.

    Article  CAS  Google Scholar 

  25. Li, W. G., X. Y. Luo, et al. Correlation of mechanical factors and gallbladder pain. Comput. Math. Methods Med. 9(1):27–45, 2008.

    Article  Google Scholar 

  26. Luo, X. Y., W. G. Li, et al. On the mechanical behaviour of the human biliary system. World J. Gastroenterol. 13:1384–1392, 2007.

    Google Scholar 

  27. MacPherson, B., G. Scott, et al. The muscle layer of the canine gallbladder and cystic duct. Cells Tissues Organs 120(3):117–122, 1984.

    Article  CAS  Google Scholar 

  28. Mahour, G., K. Wakim, et al. The common bile duct in man: its diameter and circumference. Ann. Surg. 165(3):415, 1967.

    Article  CAS  PubMed  Google Scholar 

  29. Meiss, R. Graded activation in rabbit mesotubarium smooth muscle. Am. J. Physiol. 229(2):455, 1975.

    CAS  PubMed  Google Scholar 

  30. Melzack, R. The McGill Pain Questionnaire: major properties and scoring methods. Pain 1(3):277–299, 1975.

    Article  CAS  PubMed  Google Scholar 

  31. Middelfart, H. V., P. Jensen, et al. Pain patterns after distension of the gallbladder in patients with acute cholecystitis. Scand. J. Gastroenterol. 33(9):982–987, 1998.

    Article  CAS  PubMed  Google Scholar 

  32. Morales, S., P. Camello, et al. Characterization of intracellular Ca2+ stores in gallbladder smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 288(3):G507, 2005.

    Article  CAS  PubMed  Google Scholar 

  33. Ness, T. J., and G. F. Gebhart. Visceral pain: a review of experimental studies. Pain 41(2):167–234, 1990.

    Article  CAS  PubMed  Google Scholar 

  34. Novozhilov, V. V. Thin Shell Theory. Groningen: P. Noordhoff Ltd, pp. 124–1130, 1964.

  35. Ooi, R. C., X. Y. Luo, et al. The flow of bile in the human cystic duct. J. Biomech. 37(12):1913–1922, 2004.

    Article  CAS  PubMed  Google Scholar 

  36. Parkman, H., A. Pagano, et al. Electric field stimulation-induced guinea pig gallbladder contractions (role of calcium channels in acetylcholine release). Dig. Dis. Sci. 42(9):1919–1925, 1997.

    Article  CAS  PubMed  Google Scholar 

  37. Parkman, H., R. Garbarino, et al. Myosin light chain phosphorylation correlates with contractile force in guinea pig gallbladder muscle. Dig. Dis. Sci. 46(1):176–181, 2001.

    Article  CAS  PubMed  Google Scholar 

  38. Pauletzki, J., M. Sackmann, et al. Evaluation of gallbladder volume and emptying with a novel three-dimensional ultrasound system: comparison with the sum-of-cylinders and the ellipsoid methods. J. Clin. Ultrasound 24(6):277–285, 1996.

    Article  CAS  PubMed  Google Scholar 

  39. Petersen, P., C. Gao, et al. Pain intensity and biomechanical responses during ramp-controlled distension of the human rectum. Dig. Dis. Sci. 48(7):1310–1316, 2003.

    Article  PubMed  Google Scholar 

  40. Renzetti, L., M. Wang, et al. Contribution of intracellular calcium to gallbladder smooth muscle contraction. Am. J. Physiol. Gastrointest. Liver Physiol. 259(1):G1, 1990.

    CAS  Google Scholar 

  41. Ryan, J. Calcium and gallbladder smooth muscle contraction in the guinea pig: effect of pregnancy. Gastroenterology 89(6):1279, 1985.

    CAS  PubMed  Google Scholar 

  42. Ryan, J., and S. Cohen. Gallbladder pressure-volume response to gastrointestinal hormones. Am. J. Physiol. 230(6):1461, 1976.

    CAS  PubMed  Google Scholar 

  43. Schoetz, Jr., D., W. LaMorte, et al. Mechanical properties of primate gallbladder: description by a dynamic method. Am. J. Physiol. Gastrointest. Liver Physiol. 241(5):376, 1981.

    Google Scholar 

  44. Shaffer, E. A. Epidemiology of gallbladder stone disease. Best Pract. Res. Clin. Gastroenterol. 20(6):981–996, 2006.

    Article  PubMed  Google Scholar 

  45. Shaffer, E., A. Bomzon, et al. The source of calcium for CCK-induced contraction of the guinea-pig gallbladder. Regul. Pept. 37(1):15–26, 1992.

    Article  CAS  PubMed  Google Scholar 

  46. Shimada, T. Voltage-dependent calcium channel current in isolated gallbladder smooth muscle cells of guinea pig. Am. J. Physiol. Gastrointest. Liver Physiol. 264(6):1066, 1993.

    Google Scholar 

  47. Shoucri, R. Theoretical study of pressure-volume relation in left ventricle. Am. J. Physiol. Heart Circ. Physiol. 260(1):H282, 1991.

    CAS  Google Scholar 

  48. Shoucri, R. Studying the mechanics of left ventricular contraction. IEEE Eng. Med. Biol. Mag. 17(3):95–101, 1998.

    Article  CAS  PubMed  Google Scholar 

  49. Shoucri, R. Active and passive stresses in the myocardium. Am. J. Physiol. Heart Circ. Physiol. 279(5):H2519, 2000.

    CAS  PubMed  Google Scholar 

  50. Smythe, A., A. Majeed, et al. A requiem for the cholecystokinin provocation test? Gut 43(4):571, 1998.

    Article  CAS  PubMed  Google Scholar 

  51. Smythe, A., R. Ahmed, et al. Bethanechol provocation testing does not predict symptom relief after cholecystectomy for acalculous biliary pain. Dig. Liver Dis. 36(10):682–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  52. Streeter, Jr., D., R. Vaishnav, et al. Stress distribution in the canine left ventricle during diastole and systole. Biophys. J. 10(4):345–363, 1970.

    Article  PubMed  Google Scholar 

  53. Washabau, R., M. Wang, et al. Effect of muscle length on isometric stress and myosin light chain phosphorylation in gallbladder smooth muscle. Am. J. Physiol. Gastrointest. Liver Physiol. 260(6):920, 1991.

    Google Scholar 

  54. Washabau, R., M. Wang, et al. Role of myosin light-chain phosphorylation in guinea pig gallbladder smooth muscle contraction. Am. J. Physiol. Gastrointest. Liver Physiol. 266(3):G469, 1994.

    CAS  Google Scholar 

  55. Williamson, R. Acalculous disease of the gallbladder. Gut 29(6):860, 1988.

    Article  CAS  PubMed  Google Scholar 

  56. Yamasaki, T., K. Chijiiwa, et al. Direct contractile effect of motilin on isolated smooth muscle cells from human gallbladder. J. Surg. Res. 56(1):89–93, 1994.

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, L., A. Bonev, et al. Ionic basis of the action potential of guinea pig gallbladder smooth muscle cells. Am. J. Physiol., Cell Physiol. 265(6):C1552, 1993.

    CAS  Google Scholar 

Download references

Acknowledgment

The project was supported by EPSRC through grant EP/G015651.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Y. Luo.

Additional information

Associate Editor Peter E. McHugh oversaw the review of this article.

Appendix: Grid Independence Test for the Adina Numerical Model

Appendix: Grid Independence Test for the Adina Numerical Model

Element

Mesh size (mm) (length of an edge)

Peak σ xx (Pa)

Peak σ yy (Pa)

Peak σ zz (Pa)

4-node quad

0.75

9607

13,179

13,178

1.0 (the chosen grid)

9607

13,175

13,172

1.25

9602

13,168

13,166

8-node quad

1.0

9612

13,192

13,189

Triangle

1.0

9609

13,186

13,185

Note that the effect of choosing different types of element is equivalent to choosing one type of element and different grid points. The test shows that the peak stress components do not change significantly when using different grids, therefore the 4-node quadrilateral element with 1-mm mesh size was chosen for the final results.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W.G., Luo, X.Y., Hill, N.A. et al. A Mechanical Model for CCK-Induced Acalculous Gallbladder Pain. Ann Biomed Eng 39, 786–800 (2011). https://doi.org/10.1007/s10439-010-0205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0205-1

Keywords

Navigation