Skip to main content
Log in

Characterization of Respiratory Drug Delivery with Enhanced Condensational Growth using an Individual Path Model of the Entire Tracheobronchial Airways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate the delivery of inhaled pharmaceutical aerosols using an enhanced condensational growth (ECG) approach in an airway model extending from the oral cavity to the end of the tracheobronchial (TB) region. The geometry consisted of an elliptical mouth-throat (MT) model, the upper TB airways extending to bifurcation B3, and a subsequent individual path model entering the right lower lobe of the lung. Submicrometer monodisperse aerosols with diameters of 560 and 900 nm were delivered to the mouth inlet under control (25 °C with subsaturated air) or ECG (39 or 42 °C with saturated air) conditions. Flow fields and droplet characteristics were simulated using a computational fluid dynamics model that was previously demonstrated to accurately predict aerosol size growth and deposition. Results indicated that both the control and ECG delivery cases produced very little deposition in the MT and upper TB model (approximately 1%). Under ECG delivery conditions, large size increases of the aerosol droplets were observed resulting in mass median aerodynamic diameters of 2.4–3.3 μm exiting B5. This increase in aerosol size produced an order of magnitude increase in aerosol deposition within the TB airways compared with the controls, with TB deposition efficiencies of approximately 32–46% for ECG conditions. Estimates of downstream pulmonary deposition indicted near full lung retention of the aerosol during ECG delivery. Furthermore, targeting the region of TB deposition by controlling the inlet temperature conditions and initial aerosol size also appeared possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Asgharian, B., and O. T. Price. Airflow distribution in the human lung and its influence on particle deposition. Inhal. Toxicol. 18:795–801, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Asgharian, B., O. T. Price, and W. Hofmann. Prediction of particle deposition in the human lung using realistic models of lung ventilation. Aerosol Sci. 37:1209–1221, 2006.

    Article  CAS  Google Scholar 

  3. Azarmi, S., W. H. Roa, and R. Lobenberg. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv. Drug Deliv. Rev. 60:863–875, 2008.

    Article  CAS  PubMed  Google Scholar 

  4. Borgstrom, L., B. Olsson, and L. Thorsson. Degree of throat deposition can explain the variability in lung deposition of inhaled drugs. J. Aerosol Med. 19:473–483, 2006.

    Article  PubMed  Google Scholar 

  5. Byron, P. R. Drug delivery devices: issues in drug development. Proc. Am. Thorac. Soc. 1:321–328, 2004.

    Article  CAS  PubMed  Google Scholar 

  6. Chan, T. L., and M. Lippmann. Experimental measurements and empirical modeling of the regional deposition of inhaled particles in humans. Am. Ind. Hyg. Assoc. J. 41:399–409, 1980.

    CAS  PubMed  Google Scholar 

  7. Cheng, Y. S. Aerosol deposition in the extrathoracic region. Aerosol Sci. Technol. 37:659–671, 2003.

    Article  CAS  PubMed  Google Scholar 

  8. Cheng, K. H., Y. S. Cheng, H. C. Yeh, and D. L. Swift. Measurements of airway dimensions and calculation of mass transfer characteristics of the human oral passage. J. Biomech. Eng. 119:476–482, 1997.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, Y. S., C. S. Fu, D. Yazzie, and Y. Zhou. Respiratory deposition patterns of salbutamol pMDI with CFC and HFA-134a formulations in a human airway replica. J. Aerosol Med. 14(2):255–266, 2001.

    Article  CAS  PubMed  Google Scholar 

  10. Ferron, G. A., B. Haider, and W. G. Kreyling. Conditions for measuring supersaturation in the human lung using aerosols. J. Aerosol Sci. 15:211–215, 1984.

    Article  CAS  Google Scholar 

  11. Ferron, G. A., G. Oberdorster, and R. Hennenberg. Estimation of the deposition of aerosolised drugs in the human respiratory tract due to hygroscopic growth. J. Aerosol Med. 2:271, 1989.

    Article  Google Scholar 

  12. Finlay, W. H. Estimating the type of hygroscopic behavior exhibited by aqueous droplets. J. Aerosol Med. 11(4):221–229, 1998.

    Article  CAS  PubMed  Google Scholar 

  13. Finlay, W. H., and A. R. Martin. Recent advances in predictive understanding of respiratory tract deposition. J. Aerosol Med. Pulm. Drug Deliv. 21(2):189–205, 2008.

    Article  PubMed  Google Scholar 

  14. Gemci, T., V. Ponyavin, Y. Chen, H. Chen, and R. Collins. Computational model of airflow in upper 17 generations of human respiratory tract. J. Biomech. 41(9):2047–2054, 2008.

    Article  CAS  PubMed  Google Scholar 

  15. Hammersley, J. R., and D. E. Olson. Physical models of the smaller pulmonary airways. J. Appl. Physiol. 72:2402–2414, 1992.

    CAS  PubMed  Google Scholar 

  16. Heistracher, T., and W. Hofmann. Physiologically realistic models of bronchial airway bifurcations. J. Aerosol Sci. 26(3):497–509, 1995.

    Article  CAS  Google Scholar 

  17. Hindle, M., and P. W. Longest. Evaluation of enhanced condensational growth (ECG) for controlled respiratory drug delivery in a mouth-throat and upper tracheobronchial model. Pharm. Res. 27:1800–1811, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. Horsfield, K., G. Dart, D. E. Olson, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31:207–217, 1971.

    CAS  PubMed  Google Scholar 

  19. ICRP. Human Respiratory Tract Model for Radiological Protection. New York: Elsevier Science Ltd., 1994.

    Google Scholar 

  20. Jaques, P. A., and C. S. Kim. Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal. Toxicol. 12(8):715–731, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, C. S. Deposition of aerosol particles in human lungs: in vivo measurement and modeling. Biomarkers 14(S1):54–58, 2009.

    Article  CAS  PubMed  Google Scholar 

  22. Kleinstreuer, C., and Z. Zhang. An adjustable triple-bifurcation unit model for air–particle flow simulations in human tracheobronchial airways. J. Biomech. Eng. 131:021007, 2009.

    Article  CAS  PubMed  Google Scholar 

  23. Koblinger, L., and W. Hofmann. Monte Carlo modeling of aerosol deposition in human lungs. Part I: simulation of particle transport in a stochastic lung structure. J. Aerosol Sci. 21(5):661–674, 1990.

    Article  Google Scholar 

  24. Lai, S. K., Y.-Y. Wang, and J. Hanes. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61:158–171, 2009.

    Article  CAS  PubMed  Google Scholar 

  25. Li, Z., C. Kleinstreuer, and Z. Zhang. Particle deposition in the human tracheobronchial airways due to transient inspiratory flow patterns. Aerosol Sci. 38:625–644, 2007.

    Article  Google Scholar 

  26. Lin, C.-L., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir. Physiol. Neurobiol. 157:295–309, 2007.

    Article  PubMed  Google Scholar 

  27. Lin, C.-L., M. H. Tawhai, G. McLennan, and E. A. Hoffman. Multiscale simulation of gas flow in subject-specific models of the human lung. IEEE Eng. Med. Biol. 28:25–33, 2009.

    CAS  Google Scholar 

  28. Longest, P. W., and M. Hindle. Evaluation of the Respimat Soft Mist inhaler using a concurrent CFD and in vitro approach. J. Aerosol Med. Pulm. Drug Deliv. 22(2):99–112, 2009.

    Article  Google Scholar 

  29. Longest, P. W., and M. Hindle. CFD simulations of enhanced condensational growth (ECG) applied to respiratory drug delivery with comparisons to in vitro data. J. Aerosol Sci. 41:805–820, 2010.

    Article  PubMed  Google Scholar 

  30. Longest, P. W., and M. J. Oldham. Mutual enhancements of CFD modeling and experimental data: a case study of one micrometer particle deposition in a branching airway model. Inhal. Toxicol. 18(10):761–772, 2006.

    Article  CAS  PubMed  Google Scholar 

  31. Longest, P. W., and S. Vinchurkar. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data. Med. Eng. Phys. 29(3):350–366, 2007.

    Article  PubMed  Google Scholar 

  32. Longest, P. W., and S. Vinchurkar. Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence. J. Biomech. 40:305–316, 2007.

    Article  Google Scholar 

  33. Longest, P. W., and J. Xi. Effectiveness of direct Lagrangian tracking models for simulating nanoparticle deposition in the upper airways. Aerosol Sci. Technol. 41:380–397, 2007.

    Article  CAS  Google Scholar 

  34. Longest, P. W., and J. Xi. Condensational growth may contribute to the enhanced deposition of cigarette smoke particles in the upper respiratory tract. Aerosol Sci. Technol. 42:579–602, 2008.

    Article  CAS  Google Scholar 

  35. Longest, P. W., M. Hindle, S. Das Choudhuri, and P. R. Byron. Numerical simulations of capillary aerosol generation: CFD model development and comparisons with experimental data. Aerosol Sci. Technol. 41:952–973, 2007.

    Article  CAS  Google Scholar 

  36. Longest, P. W., M. Hindle, S. Das Choudhuri, and J. Xi. Comparison of ambient and spray aerosol deposition in a standard induction port and more realistic mouth-throat geometry. J. Aerosol Sci. 39:572–591, 2008.

    Article  CAS  Google Scholar 

  37. Longest, P. W., M. Hindle, and S. Das Choudhuri. Effects of generation time on spray aerosol transport and deposition in models of the mouth-throat geometry. J. Aerosol Med. Pulm. Drug Deliv. 22(3):67–84, 2009.

    Article  Google Scholar 

  38. Longest, P. W., J. T. McLeskey, and M. Hindle. Characterization of nanoaerosol size change during enhanced condensational growth. Aerosol Sci. Technol. 44:473–483, 2010.

    Article  CAS  PubMed  Google Scholar 

  39. Ma, B., and K. R. Lutchen. CFD simulations of aerosol deposition in an anatomically based human large-medium airway model. Ann. Biomed. Eng. 37(2):271–285, 2009.

    Article  PubMed  Google Scholar 

  40. Martonen, T. B., Y. Yang, and Z. Q. Xue. Influences of cartilaginous rings on tracheobronchial fluid dynamics. Inhal. Toxicol. 6(3):185–198, 1994.

    Article  Google Scholar 

  41. Matida, E. A., W. H. Finlay, and L. B. Grgic. Improved numerical simulation of aerosol deposition in an idealized mouth-throat. J. Aerosol Sci. 35:1–19, 2004.

    Article  CAS  Google Scholar 

  42. Matida, E. A., W. H. Finlay, M. Breuer, and C. F. Lange. Improving prediction of aerosol deposition in an idealized mouth using large-eddy simulation. J. Aerosol Med. 19(3):290–300, 2006.

    Article  CAS  PubMed  Google Scholar 

  43. Newman, S. Respiratory Drug Delivery: Essential Theory and Practice. Richmond: RDD Online, 2009.

    Google Scholar 

  44. Nikander, K., I. Prince, S. Coughlin, S. Warren, and G. Taylor. Mode of breathing-tidal or slow and deep-through the I-neb adaptive delivery (ADD) system affects lung deposition of 99mTc-DTPA. J. Aerosol Med. 23(S1):S37–S43, 2010.

    CAS  Google Scholar 

  45. Phalen, R. F., H. C. Yeh, G. M. Schum, and O. G. Raabe. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat. Rec. 190:167–176, 1978.

    Article  CAS  PubMed  Google Scholar 

  46. Robinson, R. J., J. Russo, and R. L. Doolittle. 3D airway reconstruction using visible human data set and human casts with comparison to morphometric data. Anat. Rec. 292:1028–1044, 2009.

    Article  Google Scholar 

  47. Russo, J., R. Robinson, and M. J. Oldham. Effects of cartilage rings on airflow and particle deposition in the trachea and main bronchi. Med. Eng. Phys. 30:581–589, 2008.

    Article  CAS  PubMed  Google Scholar 

  48. Schroeter, J. D., C. J. Musante, D. M. Hwang, R. Burton, R. Guilmette, and T. B. Martonen. Hygroscopic growth and deposition of inhaled secondary cigarette smoke in human nasal pathways. Aerosol Sci. Technol. 34(1):137–143, 2001.

    CAS  Google Scholar 

  49. Smaldone, G. C. Advances in aerosols: adult respiratory disease. J. Aerosol Med. 19(1):36–46, 2006.

    Article  CAS  PubMed  Google Scholar 

  50. Stahlhofen, W., G. Rudolf, and A. C. James. Intercomparison of experimental regional aerosol deposition data. J. Aerosol Med. 2(3):285–308, 1989.

    Article  Google Scholar 

  51. Sung, J. C., B. L. Pulliam, and D. A. Edwards. Nanoparticles for drug delivery to the lungs. Trends Biotechnol. 25:563–570, 2007.

    Article  CAS  PubMed  Google Scholar 

  52. Vinchurkar, S., and P. W. Longest. Evaluation of hexahedral, prismatic and hybrid mesh styles for simulating respiratory aerosol dynamics. Comput. Fluids 37:317–331, 2008.

    Article  Google Scholar 

  53. Vinchurkar, S., P. W. Longest, and J. Peart. CFD simulations of the Andersen cascade impactor: model development and effects of aerosol charge. J. Aerosol Sci. 40:807–822, 2009.

    Article  CAS  Google Scholar 

  54. Xi, J., and P. W. Longest. Transport and deposition of micro-aerosols in realistic and simplified models of the oral airway. Ann. Biomed. Eng. 35(4):560–581, 2007.

    Article  PubMed  Google Scholar 

  55. Xi, J., and P. W. Longest. Effects of oral airway geometry characteristics on the diffusional deposition of inhaled nanoparticles. ASME J. Biomech. Eng. 130:011008, 2008.

    Article  Google Scholar 

  56. Xi, J., P. W. Longest, and T. B. Martonen. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J. Appl. Physiol. 104:1761–1777, 2008.

    Article  PubMed  Google Scholar 

  57. Xie, Y., P. Zeng, R. Siegel, T. S. Wiedmann, B. E. Hammer, and P. W. Longest. Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm. Res. 27(5):855–865, 2010.

    Article  CAS  PubMed  Google Scholar 

  58. Yeh, H. C., and G. M. Schum. Models of human lung airways and their application to inhaled particle deposition. Bull. Math. Biol. 42:461–480, 1980.

    CAS  PubMed  Google Scholar 

  59. Yin, Y., J. Choi, E. A. Hoffman, M. H. Tawhai, and C.-L. Lin. Simulation of pulmonary air flow with a subject-specific boundary condition. J. Biomech. 43:2159–2163, 2010.

    Article  PubMed  Google Scholar 

  60. Zhang, Y., and W. H. Finlay. Measurement of the effect of cartilaginous rings on particle deposition in a proximal lung bifurcation model. Aerosol Sci. Technol. 39:394–399, 2005.

    Article  CAS  Google Scholar 

  61. Zhang, Z., C. Kleinstreuer, and C. S. Kim. Water vapor transport and its effects on the deposition of hygroscopic droplets in a human upper airway model. Aerosol Sci. Technol. 40:52–67, 2006.

    Google Scholar 

  62. Zhang, Y., K. Gilbertson, and W. H. Finlay. In vivo–in vitro comparison of deposition in three mouth-throat models with Qvar and Turbuhaler inhalers. J. Aerosol Med. 20(3):227–235, 2007.

    Article  CAS  PubMed  Google Scholar 

  63. Zhang, Z., C. Kleinstreuer, and C. S. Kim. Comparison of analytical and CFD models with regard to micron particle deposition in a human 16-generation tracheobronchial airway model. Aerosol Sci. 40:16–28, 2009.

    Article  Google Scholar 

  64. Zhou, Y., and Y. S. Cheng. Particle deposition in a cast of human tracheobronchial airways. Aerosol Sci. Technol. 39:492–500, 2005.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Award Number R21 HL094991 from the National Heart, Lung, And Blood Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart, Lung, And Blood Institute or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Worth Longest.

Additional information

Associate Editor Kenneth R. Lutchen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, G., Longest, P.W., Su, G. et al. Characterization of Respiratory Drug Delivery with Enhanced Condensational Growth using an Individual Path Model of the Entire Tracheobronchial Airways. Ann Biomed Eng 39, 1136–1153 (2011). https://doi.org/10.1007/s10439-010-0223-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0223-z

Keywords

Navigation