Skip to main content
Log in

Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We investigate the biophysical characteristics of healthy human red blood cells (RBCs) traversing microfluidic channels with cross-sectional areas as small as 2.7 × 3 μm. We combine single RBC optical tweezers and flow experiments with corresponding simulations based on dissipative particle dynamics (DPD), and upon validation of the DPD model, predictive simulations and companion experiments are performed in order to quantify cell deformation and pressure–velocity relationships for different channel sizes and physiologically relevant temperatures. We discuss conditions associated with the shape transitions of RBCs along with the relative effects of membrane and cytosol viscosity, plasma environments, and geometry on flow through microfluidic systems at physiological temperatures. In particular, we identify a cross-sectional area threshold below which the RBC membrane properties begin to dominate its flow behavior at room temperature; at physiological temperatures this effect is less profound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abkarian, M., M. Faivre, and H. A. Stone. High-speed microfluidic differential manometer for cellular-scale hydrodynamics. Proc. Natl. Acad. Sci. USA 103:538–542, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Antia, M., T. Herricks, and P. K. Rathod. Microfluidic modeling of cell–cell interactions in malaria pathogenesis. PLoS Pathog. 3:939–948, 2007.

    Article  CAS  Google Scholar 

  3. Bagchi, P., P. C. Johnson, and A. S. Popel. Computational fluid dynamic simulation of aggregation of deformable cells in a shear flow. J. Biomech. Eng. Trans. ASME 127:1070–1080, 2005.

    Article  Google Scholar 

  4. Boey, S. K., D. H. Boal, and D. E. Discher. Simulations of the erythrocyte cytoskeleton at large deformation. i. microscopic models. Biophys. J. 75:1573–1583, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Canham, P. B., and A. C. Burton. Distribution of size and shape in populations of normal human red cells. Circul Res. 22:405–422, 1968.

    CAS  Google Scholar 

  6. Chien, S. Red cell deformability and its relevance to blood flow. Annu. Rev. Physiol. 49:177–192, 1987.

    Article  CAS  PubMed  Google Scholar 

  7. Danker, G., P. M. Vlahovska, and C. Misbah. Vesicles in Poiseuille flow. Phys. Rev. Lett. 102:148102, 2009.

    Article  PubMed  Google Scholar 

  8. Evans, E. A., and R. M. Hochmuth. Membrane viscoelasticity. Biophys. J. 16:1–11, 1976.

    Article  CAS  PubMed  Google Scholar 

  9. Fedosov, D., B. Caswell, and G. E. Karniadakis. A multiscale red blood cell model with accurate mechanics, rheology and dynamics. Biophys. J. 98:2215–2225, 2010.

    Article  CAS  PubMed  Google Scholar 

  10. Frank, R. S., and R. M. Hochmuth. The influence of red cell mechanical properties on flow through single capillary-sized pores. J. Biomech. Eng. Trans. ASME 110:155–160, 1988.

    Article  CAS  Google Scholar 

  11. Groot, R. D., and P. B. Warren. Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107:4423–4435, 1997.

    Article  CAS  Google Scholar 

  12. Herrmann, A., and P. M. Müller. Correlation of the internal microviscosity of human erythrocytes to the cell volume and the viscosity of hemoglobin solutions. Biochim. Biophys. Acta 885:80–87, 1986.

    Article  CAS  PubMed  Google Scholar 

  13. Higgins, J. M., D. T. Eddington, S. N. Bhatia, and L. Mahadevan. Sickle cell vasoocclusion and rescue in a microfluidic device. Proc. Natl. Acad. Sci. USA 104:20496–20500, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Hochmuth, R. M., R. N. Marple, and S. P. Sutera. Capillary blood flow. I. erythrocyte deformation in glass capillaries. Microvasc. Res. 2:409–419, 1970.

    Article  CAS  PubMed  Google Scholar 

  15. McWhirter, J. L., H. Noguchi, and G. Gompper. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proc. Natl. Acad. Sci. USA 106:6039–6043, 2009.

    Article  CAS  PubMed  Google Scholar 

  16. Mills, J. P., M. Diez-Silva, D. J. Quinn, M. Dao, M. Lang, K. S. Tan, C. T. Lim, G. Milon, P. H. David, O. Mercereau-Puijalon, S. Bonnefoy, and S. Suresh. Effect of plasmodial resa protein on deformability of human red blood cells harboring plasmodium falciparum. Proc. Natl. Acad. Sci. USA 104:9213–9217, 2007.

    Article  CAS  PubMed  Google Scholar 

  17. Mills, J. P., L. Qie, M. Dao, C. T. Lim, and S. Suresh. Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. MCB 1:169–180, 2004.

    CAS  PubMed  Google Scholar 

  18. Mohandas, N., and E. Evans. Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. Annu. Rev. Biophys. Biomol. Struct. 23:787–818, 1994.

    Article  CAS  PubMed  Google Scholar 

  19. Noguchi, H., and G. Gompper. Shape transitions of fluid vesicles and red blood cells in capillary flows. Proc. Natl. Acad. Sci. USA 102:14159–14164, 2005.

    Article  CAS  PubMed  Google Scholar 

  20. Park, Y., M. Diez-Silva, G. Popescu, G. Lykotrafitis, W. Choi, M. S. Feld, and S. Suresh. Refractive index maps and membrane dynamics of human red blood cells parasitized by plasmodium falciparum. Proc. Natl. Acad. Sci. USA 105:13730–13735, 2008.

    Article  CAS  PubMed  Google Scholar 

  21. Pivkin, I. V., and G. E. Karniadakis. Accurate coarse-grained modeling of red blood cells. Phys. Rev. Lett. 101:118105, 2008.

    Article  PubMed  Google Scholar 

  22. Popel, A., and P. Johnson. Microcirculation and hemorheology. Annu. Rev. Fluid. Mech. 37:43–69, 2005.

    Article  PubMed  Google Scholar 

  23. Pozrikidis, C. Numerical simulation of blood flow through microvascular capillary networks. Bull. Math. Biol. 71:1520–1541, 2009.

    Article  CAS  PubMed  Google Scholar 

  24. Secomb, T. W., and R. Hsu. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties. Biophys. J. 71:1095–1101, 1996.

    Article  CAS  PubMed  Google Scholar 

  25. Shevkoplyas, S., T. Yoshida, S. Gifford, and M. Bitensky. Direct measurement of the impact of impaired erythrocyte deformability on microvascular network perfusion in a microfluidic device. Lab Chip 6:914–920, 2006.

    Article  CAS  PubMed  Google Scholar 

  26. Suresh, S., J. Spatz, J. Mills, A. Micoulet, M. Dao, C. Lim, M. Beil, and T. Seufferlein. Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria. Acta Biomater. 1:15–30, 2005.

    Article  CAS  PubMed  Google Scholar 

  27. Sutton, N., M. C. Tracey, I. D. Johnston, R. S. Greenaway, and M. W. Rampling. A novel instrument for studying the flow behaviour of erythrocytes through microchannels simulating human blood capillaries. Microvasc. Res. 53:272–281, 1997.

    Article  CAS  PubMed  Google Scholar 

  28. Waugh, R., and E. A. Evans. Thermoelasticity of red blood cell membrane. Biophys. J. 26:115–131, 1979.

    Article  CAS  PubMed  Google Scholar 

  29. Weinbaum, S., J. M. Tarbell, and E. R. Damiano. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–167, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done as a part of the interdisciplinary research group on Infectious Diseases which is supported by the Singapore MIT Alliance for Research and Technology (SMART) and was also partially supported by NIH/NHLBI award number R01HL094270. This work made use of MRSEC Shared Facilities supported by the National Science Foundation under Award Number DMR-0213282. Simulations were performed using the NSF NICS supercomputing center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Em Karniadakis.

Additional information

Associate Editor Aleksander S. Popel oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (202 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quinn, D.J., Pivkin, I., Wong, S.Y. et al. Combined Simulation and Experimental Study of Large Deformation of Red Blood Cells in Microfluidic Systems. Ann Biomed Eng 39, 1041–1050 (2011). https://doi.org/10.1007/s10439-010-0232-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0232-y

Keywords

Navigation