Skip to main content

Advertisement

Log in

Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Determining the mechanical properties of an individual’s skin is important in the fields of pathology, biomedical device design, and plastic surgery. To address this need, we present a finite element model that simulates the skin of the anterior forearm and posterior upper arm under a rich set of three-dimensional deformations. We investigated the suitability of the Ogden and Tong and Fung strain energy functions along with a quasi-linear viscoelastic law. Using non-linear optimization techniques, we found material parameters and in vivo pre-stresses for different volunteers. The model simulated the experiments with errors-of-fit ranging from 13.7 to 21.5%. Pre-stresses ranging from 28 to 92 kPa were estimated. We show that using only in-plane experimental data in the parameter optimization results in a poor prediction of the out-of-plane response. The identifiability of the model parameters, which are evaluated using different determinability criteria, improves by increasing the number of deformation orientations in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Alexander, H., and T. H. Cook. Accounting for natural tension in the mechanical testing of human skin. J. Invest. Dermatol. 69:310–314, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Arruda, E. M., and M. C. Boyce. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 41:389–412, 1993.

    Article  CAS  Google Scholar 

  3. Babarenda Gamage, T. P., V. Rajagopal, M. Ehrgott, P. M. F. Nielsen, and M. P. Nash. Identification of mechanical properties of heterogeneous soft bodies using gravity loading. Int. J. Numer. Method Biomed. Eng. 27:391–407, 2011.

    Article  Google Scholar 

  4. Batisse, D., R. Bazin, T. Baldeweck, B. Querleux, and J.-L. Lévêque. Influence of age on the wrinkling capacities of skin. Skin Res. Technol. 8:148–154, 2002.

    Article  PubMed  Google Scholar 

  5. Belkoff, S. M., and R. C. Haut. A structural model used to evaluate the changing microstructure of maturing rat skin. J. Biomech. 24:711–720, 1991.

    Article  PubMed  CAS  Google Scholar 

  6. Bischoff, J. E. Reduced parameter formulation for incorporating fiber level viscoelasticity into tissue level biomechanical models. Ann. Biomed. Eng. 34:1164–1172, 2006.

    Article  PubMed  Google Scholar 

  7. Bischoff, J. E., E. M. Arruda, and K. Grosh. Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive model. J. Biomech. 33:645–652, 2000.

    Article  PubMed  CAS  Google Scholar 

  8. Borges, A. F. Relaxed skin tension lines. Dermatol. Clin. 7:169–177, 1989.

    PubMed  CAS  Google Scholar 

  9. Cacou, C., and I. F. K. Muir. Effects of plane mechanical forces in wound healing in humans. J. R. Coll. Surg. Edin. 40:38–41, 1995.

    CAS  Google Scholar 

  10. Cavicchi, A., L. Gambarotta, and R. Massabò. Computational modeling of reconstructive surgery: the effects of the natural tension on skin wrinkling. Finite Elem. Anal. Des. 45:519–529, 2009.

    Article  Google Scholar 

  11. Cerda, E. Mechanics of scars. J. Biomech. 38:1598–1603, 2005.

    Article  PubMed  CAS  Google Scholar 

  12. Clancy, N. T., G. E. Nilsson, C. D. Anderson, and M. J. Leahy. A new device for assessing changes in skin viscoelasticity using indentation and optical measurement. Skin Res. Technol. 16:210–228, 2010.

    Article  PubMed  Google Scholar 

  13. Daly, C. H., and G. F. Odland. Age-related changes in the mechanical properties of human skin. J. Invest. Dermatol. 73:84–87, 1979.

    Article  PubMed  CAS  Google Scholar 

  14. de Jong, L. A. M. Pre-Tension and Anisotropy in Skin: Modelling and Experiments. Eindhoven: Faculty of Mechanical Engineering, Eindhoven University of Technology, 1995.

    Google Scholar 

  15. Delalleau, A., G. Josse, J.-M. Lagarde, H. Zahouani, and J.-M. Bergheau. Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J. Biomech. 39:1603–1610, 2006.

    Article  PubMed  Google Scholar 

  16. Delalleau, A., G. Josse, J. M. Lagarde, H. Zahouani, and J. M. Bergheau. Characterization of the mechanical properties of skin by inverse analysis combined with an extensometry test. Wear 264:405–410, 2008.

    Article  CAS  Google Scholar 

  17. Diridollou, S., F. Patat, F. Gens, L. Vaillant, D. Black, J. M. Lagarde, Y. Gall, and M. Berson. In vivo model of the mechanical properties of the human skin under suction. Skin Res. Technol. 6:214–221, 2000.

    Article  PubMed  Google Scholar 

  18. Evans, S. L., and C. A. Holt. Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling. J. Strain Anal. 44:337–345, 2009.

    Article  Google Scholar 

  19. Flynn, C., A. Taberner, and P. Nielsen. Measurement of the force–displacement response of in vivo human skin under a rich set of deformations. Med. Eng. Phys. 2011. doi:10.1016/j.medengphy.2010.12.017.

  20. Flynn, C., A. Taberner, and P. Nielsen. Mechanical characterisation of in vivo human skin using a 3D force-sensitive micro-robot and finite element analysis. Biomech. Model Mech. 10:27–38, 2011.

    Article  Google Scholar 

  21. Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, p. 571, 1993.

    Google Scholar 

  22. Gökrem, S., O. Özdemir, M. E. Demirseren, A. Katircioğlu, Z. Can, and K. Sevin. Correction of a mild breast contracture with a new technique: “V-Y-Z-PLASTY”. Eur. J. Plast. Surg. 26:255–257, 2003.

    Article  Google Scholar 

  23. Hendriks, F. M., D. Brokken, J. T. W. M. van Eemeren, C. W. J. Oomens, F. P. T. Baaijens, and J. B. A. M. Horsten. A numerical-experimental method to characterize the non-linear mechanical behavior of human skin. Skin Res. Technol. 9:274–283, 2003.

    Article  PubMed  CAS  Google Scholar 

  24. Hendriks, C. P., and S. E. Franklin. Influence of surface roughness, material and climate conditions on the friction of human skin. Tribol. Lett. 37:361–373, 2010.

    Article  CAS  Google Scholar 

  25. Jacquet, E., G. Josse, F. Khatyr, and C. Garcin. A new experimental method for measuring skin’s natural tension. Skin Res. Technol. 14:1–7, 2008.

    PubMed  Google Scholar 

  26. Jones, M. H., M. A. Pouchak, and R. H. Mikelsons. A method for measuring skin tension. ISA Trans. 27:21–26, 1988.

    PubMed  CAS  Google Scholar 

  27. Jor, J. W. Y., M. P. Nash, P. M. F. Nielsen, and P. J. Hunter. Estimating material parameters of a structurally-based constitutive relation for skin mechanics. Biomech. Model Mech. 2011. doi:10.1007/s10237-010-0272-0.

  28. Karwoski, A. C., and R. H. Plaut. Experiments on peeling adhesive tapes from human forearms. Skin Res. Technol. 10:271–277, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Khatyr, F., C. Imberdis, D. Varchon, J.-M. Lagarde, and G. Josse. Measurement of the mechanical properties of the skin using the suction test. Skin Res. Technol. 12:24–31, 2006.

    Article  PubMed  Google Scholar 

  30. Kirby, S. D., B. Wang, C. W. S. To, and H. B. Lampe. Nonlinear, three-dimensional finite-element model of skin biomechanics. J. Otolaryngol. 27:153–160, 1998.

    PubMed  CAS  Google Scholar 

  31. Kvistedal, Y. A., and P. M. F. Nielsen. Estimating material parameters of human skin in vivo. Biomech. Model Mech. 8:1–8, 2009.

    Article  CAS  Google Scholar 

  32. Lanir, Y. Constitutive equations for fibrous connective tissues. J. Biomech. 16:1–12, 1983.

    Article  PubMed  CAS  Google Scholar 

  33. Lanir, Y. Mechanisms of residual stress in soft tissues. J. Biomech. Eng. 131:044506-1–044506-5, 2009.

    Google Scholar 

  34. Lanir, Y., O. Lichtenstein, and O. Imanuel. Optimal design of biaxial tests for structural material characterization of flat tissues. J. Biomech. Eng. 118:41–46, 1996.

    Article  PubMed  CAS  Google Scholar 

  35. Larrabee, W. F., Jr., and J. A. Galt. A finite element model of skin deformation. III. The finite element model. Laryngoscope 96:413–419, 1986.

    PubMed  Google Scholar 

  36. Lokshin, O., and Y. Lanir. Micro and macro rheology of planar tissues. Biomaterials 30:3118–3127, 2009.

    Article  PubMed  CAS  Google Scholar 

  37. Lokshin, O., and Y. Lanir. Viscoelasticity and preconditioning of rat skin under uniaxial stretch: microstructural constitutive characterization. J. Biomech. Eng. 131:031009–031010, 2009.

    Article  PubMed  Google Scholar 

  38. Lott-Crumpler, D. A., and H. R. Chaudhry. Optimal patterns for suturing wounds of complex shapes to foster healing. J. Biomech. 34:51–58, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Manschot, J. F. M., and A. J. M. Brakkee. The measurement and modelling of the mechanical properties of human skin in vivo-II. The model. J. Biomech. 19:517–521, 1986.

    Article  PubMed  CAS  Google Scholar 

  40. Ogden, R. W. Large deformation isotropic elasticity—on the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. A Mater. 326:565–584, 1972.

    Article  CAS  Google Scholar 

  41. Pailler-Mattei, C., S. Bec, and H. Zahouani. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30:599–606, 2008.

    Article  PubMed  CAS  Google Scholar 

  42. Paye, M., S. Mac-Mary, A. Elkhyat, C. Tarrit, P. Mermet, and P. H. Humbert. Use of the Reviscometer; for measuring cosmetics-induced skin surface effects. Skin Res. Technol. 13:343–349, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Reihsner, R., B. Balogh, and E. J. Menzel. Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Med. Eng. Phys. 17:304–313, 1995.

    Article  PubMed  CAS  Google Scholar 

  44. Retel, V., P. Vescovo, E. Jacquet, F. Trivaudey, D. Varchon, and A. Burtheret. Nonlinear model of skin mechanical behaviour analysis with finite element method. Skin Res. Technol. 7:152–158, 2001.

    Article  PubMed  CAS  Google Scholar 

  45. Ridge, M. D., and V. Wright. The ageing of skin. A bio-engineering approach. Gerontologia 12:174–192, 1966.

    Article  PubMed  CAS  Google Scholar 

  46. Ridge, M. D., and V. Wright. The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines. J. Invest. Dermatol. 46:341–346, 1966.

    PubMed  CAS  Google Scholar 

  47. Rubin, M. B., S. R. Bodner, and N. S. Binur. An elastic-viscoplastic model for excised facial tissues. J. Biomech. Eng. 120:686–689, 1998.

    Article  PubMed  CAS  Google Scholar 

  48. Ruvolo, E. C., Jr., G. N. Stamatas, and N. Kollias. Skin viscoelasticity displays site- and age-dependent angular anisotropy. Skin Pharmacol. Physiol. 20:313–321, 2007.

    Article  PubMed  Google Scholar 

  49. Shergold, O. A., N. A. Fleck, and D. Radford. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. Int. J. Impact Eng. 32:1384–1402, 2006.

    Article  Google Scholar 

  50. Shoemaker, P. A., D. Schneider, M. C. Lee, and Y. C. Fung. A constitutive model for two-dimensional soft tissues and its application to experimental data. J. Biomech. 19:695–702, 1986.

    Article  PubMed  CAS  Google Scholar 

  51. Silver, F. H., G. P. Seehra, J. W. Freeman, and D. DeVore. Viscoelastic properties of young and old human dermis: a proposed molecular mechanism for elastic energy storage in collagen and elastin. J. App. Polym. Sci. 86:1978–1985, 2002.

    Article  CAS  Google Scholar 

  52. Silver, F. H., L. M. Siperko, and G. P. Seehra. Mechanobiology of force transduction in dermal tissue. Skin Res. Technol. 9:3–23, 2003.

    Article  PubMed  Google Scholar 

  53. Tong, P., and Y.-C. Fung. The stress–strain relationship for the skin. J. Biomech. 9:649–657, 1976.

    Article  PubMed  CAS  Google Scholar 

  54. Verhaegen, P. D., E. M. Res, A. Van Engelen, E. Middelkoop, and P. P. Van Zuijlen. A reliable, non-invasive measurement tool for anisotropy in normal skin and scar tissue. Skin Res. Technol. 16:325–331, 2010.

    PubMed  Google Scholar 

  55. Veronda, D. R., and R. A. Westmann. Mechanical characterization of skin—finite deformations. J. Biomech. 3:111–122, IN119, 123–124, 1970.

    Google Scholar 

  56. Viatour, M., F. Henry, and G. E. Pierard. A computerized analysis of intrinsic forces in the skin. Clin. Exp. Dermatol. 20:308–312, 1995.

    Article  PubMed  CAS  Google Scholar 

  57. Vogl, T. J., C. Then, N. N. N. Naguib, N.-E. A. Nour-Eldin, M. Larson, S. Zangos, and G. Silber. Mechanical soft tissue property validation in tissue engineering using magnetic resonance imaging: experimental research. Acad. Radiol. 17:1486–1491, 2010.

    Article  PubMed  Google Scholar 

  58. Wilkes, G. L., I. A. Brown, and R. H. Wildnauer. The biomechanical properties of skin. CRC Crit. Rev. Biom. Eng. 1:453–495, 1973.

    CAS  Google Scholar 

  59. Zahouani, H., C. Pailler-Mattei, B. Sohm, R. Vargiolu, V. Cenizo, and R. Debret. Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Res. Technol. 15:68–76, 2009.

    Article  PubMed  CAS  Google Scholar 

  60. Zeng, Y. J., C. Q. Xu, J. Yang, G. C. Sun, and X. H. Xu. Biomechanical comparison between conventional and rapid expansion of skin. Br. J. Plast. Surg. 56:660–666, 2003.

    Article  PubMed  Google Scholar 

  61. Zhang, X., and J. F. Greenleaf. Estimation of tissue’s elasticity with surface wave speed (L). J. Acoust. Soc. Am. 122:2522–2525, 2007.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the New Zealand Foundation for Research, Science, and Technology, through grants NERF 139400 and NERF 9077/3608892. This publication is also based on work supported in part by Award No KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST).

Conflicts of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cormac Flynn.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flynn, C., Taberner, A. & Nielsen, P. Modeling the Mechanical Response of In Vivo Human Skin Under a Rich Set of Deformations. Ann Biomed Eng 39, 1935–1946 (2011). https://doi.org/10.1007/s10439-011-0292-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0292-7

Keywords

Navigation