Skip to main content

Advertisement

Log in

Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Predicting neck kinematics and tissue level response is essential to evaluate the potential for occupant injury in rear impact. A detailed 50th percentile male finite element model, previously validated for frontal impact, was validated for rear impact scenarios with material properties based on actual tissue properties from the literature. The model was validated for kinematic response using 4g volunteer and 7g cadaver rear impacts, and at the tissue level with 8g isolated full spine rear impact data. The model was then used to predict capsular ligament (CL) strain for increasing rear impact severity, since CL strain has been implicated as a source of prolonged pain resulting from whiplash injury. The model predicted the onset of CL injury for a 14g rear impact, in agreement with motor vehicle crash epidemiology. More extensive and severe injuries were predicted with increasing impact severity. The importance of muscle activation was demonstrated for a 7g rear impact where the CL strain was reduced from 28 to 13% with active muscles. These aspects have not previously been demonstrated experimentally, since injurious load levels cannot be applied to live human subjects. This study bridges the gap between low intensity volunteer impacts and high intensity cadaver impacts, and predicts tissue level response to assess the potential for occupant injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Barnsley, L., S. M. Lord, B. J. Wallis, and N. Bogduk. The prevalence of chronic cervical zygapophysial joint pain after whiplash. Spine 20(1):20–26, 1995.

    Article  PubMed  CAS  Google Scholar 

  2. Berglund, A., L. Alfredsson, I. Jensen, L. Bodin, and A. Nygren. Occupant- and crash-related factors associated with the risk of whiplash injury. Ann. Epidemiol. 13(1):66–72, 2003.

    Article  PubMed  Google Scholar 

  3. Brault, J. R., G. P. Siegmund, and J. B. Wheeler. Cervical muscle response during whiplash: evidence of a lengthening muscle contraction. Clin. Biomech. 15(6):426–435, 2000.

    Article  CAS  Google Scholar 

  4. Brolin, K., P. Halldin, and I. Leijonhufvud. The effect of muscle activation on neck response. Traffic Inj. Prev. 6(1):67–76, 2005.

    Article  PubMed  Google Scholar 

  5. Cambell, B., and D. S. Cronin. High rate characterization of automotive seat foams. In: Proceedings of SEM, 2007.

  6. Chazal, J., A. Tanguy, M. Bourges, G. Gaurel, G. Escande, M. Guillot, et al. Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction. J. Biomech. 18(3):167–176, 1985.

    Article  PubMed  CAS  Google Scholar 

  7. Davidsson, J., C. Deutscher, W. Hell, A. Linder, P. Lovsund, M. Svensson, et al. Human volunteer kinematics in rear-end sled collisions. In: Proceedings of IRCOBI, Goteborg, 1998, pp. 289–301.

  8. Deng, B. Kinematics of human cadaver cervical spine during low speed rear end impacts. PhD Thesis, Wayne State University, 1999.

  9. Deng, B., P. C. Begeman, K. H. Yang, S. Tashman, and A. I. King. Kinematics of human cadaver cervical spine during low speed rear-end impacts. Stapp Car Crash J. 44:171–188, 2000.

    PubMed  CAS  Google Scholar 

  10. Dibb, A. T., R. W. Nightingale, J. F. Luck, V. C. Chancey, L. E. Fronheiser, B. S. Myers, et al. Tension and combined tension-extension structural response and tolerance properties of the human male ligamentous cervical spine. J. Biomech. Eng. 131(8):081008, 2009.

    Article  PubMed  Google Scholar 

  11. DiSilvestro, M. R., and J. K. Suh. A cross-validation of the biphasic poroviscoelastic model of articular cartilage in unconfined compression, indentation, and confined compression. J. Biomech. 34(4):519–525, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Galasko, C. S., P. M. Murray, M. Pitcher, H. Chambers, S. Mansfield, M. Madden, et al. Neck sprains after road traffic accidents: a modern epidemic. Injury 24(3):155–157, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Gehre, C., H. Gades, and P. Wernicke. Objective rating of signals using test and simulation responses. In: Enhanced Safety of Vehicles, Stuttgart, Germany, 2009.

  14. Gilad, I., and M. Nissan. A study of vertebra and disc geometric relations of the human cervical and lumbar spine. Spine 11(2):154–157, 1986.

    Article  PubMed  CAS  Google Scholar 

  15. Green, D. W., J. E. Winandy, and D. E. Kretschmann. Mechanical Properties of Wood. Madison, WI: U.S. Department of Agriculture, 1999.

    Google Scholar 

  16. Happee, R. Inverse dynamic optimization including muscular dynamics, a new simulation method applied to goal directed movements. J. Biomech. 27(7):953–960, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Hynd, D., M. Svensson, X. Trosseille, M. van Ratingen, and J. Davidsson. Dummy requirements and injury criteria for a low-speed rear impact whiplash dummy. European Enhanced Vehicle-Safety Committee, EEVC WG12 #505A, 2007.

  18. Iatridis, J. C., L. A. Setton, M. Weidenbaum, and V. C. Mow. The viscoelastic behavior of the non-degenerate human lumbar nucleus pulposus in shear. J. Biomech. 30(10):1005–1013, 1997.

    Article  PubMed  CAS  Google Scholar 

  19. Ito, S., P. C. Ivancic, A. M. Pearson, Y. Tominaga, S. E. Gimenez, W. Rubin, et al. Cervical intervertebral disc injury during simulated frontal impact. Eur. Spine J. 14(4):356–365, 2005.

    Article  PubMed  CAS  Google Scholar 

  20. Ivancic, P. C., S. Ito, Y. Tominaga, W. Rubin, M. P. Coe, A. B. Ndu, et al. Whiplash causes increased laxity of cervical capsular ligament. Clin. Biomech. 23(2):159–165, 2008.

    Article  Google Scholar 

  21. Ivancic, P. C., M. M. Panjabi, S. Ito, P. A. Cripton, and J. L. Wang. Biofidelic whole cervical spine model with muscle force replication for whiplash simulation. Eur. Spine J. 14(4):346–355, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Ivancic, P. C., A. M. Pearson, M. M. Panjabi, and S. Ito. Injury of the anterior longitudinal ligament during whiplash simulation. Eur. Spine J. 13(1):61–68, 2004.

    Article  PubMed  CAS  Google Scholar 

  23. Kleinberger, M. Importance of head restraint position on whiplash injury. In: Frontiers in Whiplash Trauma: Clinical & Biomechanical, edited by N. Yoganandan, and F. A. Pintar. Amsterdam: ISO Press, 2000, pp. 477–490.

    Google Scholar 

  24. Klinich, K. D., S. M. Ebert, C. A. Van Ee, C. A. Flannagan, M. Prasad, M. P. Reed, et al. Cervical spine geometry in the automotive seated posture: variations with age, stature, and gender. Stapp Car Crash J. 48:301, 2004.

    Google Scholar 

  25. Knaub, K. E., and B. S. Myers. Project F.2(c): Cervical Spine Muscles. Durham, NC: Duke University, 1998.

    Google Scholar 

  26. Kotani, Y., P. S. McNulty, K. Abumi, B. W. Cunningham, K. Kaneda, P. C. McAfee, et al. The role of anteromedial foraminotomy and the uncovertebral joints in the stability of the cervical spine. A biomechanical study. Spine 23(14):1559–1565, 1998.

    Article  PubMed  CAS  Google Scholar 

  27. Krafft, M., A. Kullgren, C. Tingvallb, O. Boströmc, and R. Fredrikssonc. How crash severity in rear impacts influences short- and long-term consequences to the neck. Accid. Anal. Prev. 32(2):187–195, 2000.

    Article  PubMed  CAS  Google Scholar 

  28. Krafft, M., A. Kullgren, A. Ydenius, and C. Tingvall. Influence of crash pulse characteristics on whiplash associated disorders in rear impacts—crash recording in real life crashes. Traffic Inj. Prev. 3(2):141–149, 2002.

    Article  Google Scholar 

  29. Lee, K. E., A. N. Franklin, M. B. Davis, and B. A. Winkelstein. Tensile cervical facet capsule ligament mechanics: failure and subfailure responses in the rat. J. Biomech. 39(7):1256–1264, 2006.

    Article  PubMed  Google Scholar 

  30. Lee, K. E., J. H. Thinnes, D. S. Gokhin, and B. A. Winkelstein. A novel rodent neck pain model of facet-mediated behavioral hypersensitivity: implications for persistent pain and whiplash injury. J. Neurosci. Methods 137(2):151–159, 2004.

    Article  PubMed  Google Scholar 

  31. Lord, S. M., L. Barnsley, B. J. Wallis, and N. Bogduk. Chronic cervical zygapophysial joint pain after whiplash. A placebo-controlled prevalence study. Spine 21(15):1737–1745, 1996.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, Y., C. Chen, S. Kallakuri, A. Patwardhan, and J. M. Cavanaugh. Neurophysiological and biomechanical characterization of goat cervical facet joint capsules. J. Orthop. Res. 23(4):779–787, 2005.

    Article  PubMed  Google Scholar 

  33. McConnell, W. E., R. P. Howard, J. V. Poppel, R. Krause, H. M. Guzman, J. B. Bomar, et al. Human head and neck kinematics after low velocity rear-end impacts understanding whiplash. Stapp Car Crash J. 39:215–238, 1995.

    Google Scholar 

  34. Myklebust, J. B., F. Pintar, N. Yoganandan, J. F. Cusick, D. Maiman, T. J. Myers, et al. Tensile strength of spinal ligaments. Spine 13(5):526–531, 1988.

    Article  PubMed  CAS  Google Scholar 

  35. Ono, K., K. Kaneoka, A. Wittek, and J. Kajzer. Cervical injury mechanism based on the analysis of human cervical vertebral motion and head-neck-torso kinematics during low-speed rear impacts. Stapp Car Crash J. 41:339–356, 1997.

    Google Scholar 

  36. Panjabi, M. M., J. Cholewicki, K. Nibu, J. Grauer, and M. Vahldiek. Capsular ligament stretches during in vitro whiplash simulations. J. Spinal Disord. 11(3):227–232, 1998.

    Article  PubMed  CAS  Google Scholar 

  37. Panjabi, M. M., S. Ito, A. M. Pearson, and P. C. Ivancic. Injury mechanisms of the cervical intervertebral disc during simulated whiplash. Spine 29(11):1217–1225, 2004.

    Article  PubMed  Google Scholar 

  38. Panjabi, M. M., T. Oxland, K. Takata, V. Goel, J. Duranceau, M. Krag, et al. Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine 18(10):1298–1310, 1993.

    Article  PubMed  CAS  Google Scholar 

  39. Panjabi, M. M., A. M. Pearson, S. Ito, P. C. Ivancic, S. E. Gimenez, Y. Tominaga, et al. Cervical spine ligament injury during simulated frontal impact. Spine 29(21):2395–2403, 2004.

    Article  PubMed  Google Scholar 

  40. Panzer, M. B. Numerical modelling of the human cervical spine in frontal impact. M.A.Sc Thesis, University of Waterloo, 2006.

  41. Panzer, M. B., and D. S. Cronin. C4-C5 segment finite element model development, validation, and load-sharing investigation. J. Biomech. 42(4):480–490, 2009.

    Article  PubMed  Google Scholar 

  42. Panzer, M. B., J. B. Fice, and D. S. Cronin. Cervical spine response in frontal crash. Medical Engineering and Physics, 2010 (under review #MEP-D-10-00414).

  43. Pearson, A. M., P. C. Ivancic, S. Ito, and M. M. Panjabi. Facet joint kinematics and injury mechanisms during simulated whiplash. Spine 29(4):390–397, 2004.

    Article  PubMed  Google Scholar 

  44. Quinlan, K. P., J. L. Annest, B. Myers, G. Ryan, and H. Hill. Neck strains and sprains among motor vehicle occupants—United States, 2000. Accid. Anal. Prev. 36(1):21–27, 2004.

    Article  PubMed  Google Scholar 

  45. Quinn, K. P., and B. A. Winkelstein. Cervical facet capsular ligament yield defines the threshold for injury and persistent joint-mediated neck pain. J. Biomech. 40(10):2299–2306, 2007.

    Article  PubMed  Google Scholar 

  46. Radanov, B. P., M. Sturengger, and G. Di Stefano. Long-term outcome after whiplash injury: a 2-year follow-up considering features of injury mechanism and somatic, radiologic, and psychosocial findings. Medicine 74(5):281–297, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Robbins, D. H. Anthropometric Specifications for Mid-Sized Male Dummy, Vol. 2. Ann Arbor, MI: NHTSA, University of Michigan Transportation Research Institute, 1983.

    Google Scholar 

  48. Roberts, A. K., D. Hynd, P. R. Dixon, O. Murphy, M. Magnusson, M. H. Pope, et al. Kinematics of the human spine in rear impact and the biofidelity of current dummies. In: IMechE Conference Proceedings, 2002, pp. 227–246.

  49. Siegmund, G. P., B. S. Myers, M. B. Davis, H. F. Bohnet, and B. A. Winkelstein. Mechanical evidence of cervical facet capsule injury during whiplash: a cadaveric study using combined shear, compression, and extension loading. Spine 26(19):2095–2101, 2001.

    Article  PubMed  CAS  Google Scholar 

  50. Siegmund, G. P., D. J. Sanderson, B. S. Myers, and J. T. Inglis. Rapid neck muscle adaptation alters the head kinematics of aware and unaware subjects undergoing multiple whiplash-like perturbations. J. Biomech. 36(4):473–482, 2003.

    Article  PubMed  Google Scholar 

  51. Siegmund, G. P., D. J. Sanderson, B. S. Myers, and J. T. Inglis. Awareness affects the response of human subjects exposed to a single whiplash-like perturbation. Spine 28(7):671–679, 2003.

    PubMed  Google Scholar 

  52. Siegmund, G. P., B. A. Winkelstein, P. C. Ivancic, M. Y. Svensson, and A. Vasavada. The anatomy and biomechanics of acute and chronic whiplash injury. Traffic Inj. Prev. 10(2):101–112, 2009.

    Article  PubMed  Google Scholar 

  53. Sundararajan, S., P. Prasad, C. K. Demetropoulos, S. Tashman, P. C. Begeman, K. H. Yang, et al. Effect of head-neck position on cervical facet stretch of post mortem human subjects during low speed rear end impacts. Stapp Car Crash J. 48:331–372, 2004.

    PubMed  Google Scholar 

  54. Szabo, T. J., and J. B. Welcher. Subject kinematics and electromyographic activity during low speed rear impacts. Stapp Car Crash J. 40:295–315, 1996.

    Google Scholar 

  55. Thunnissen, J. G., J. S. Wismans, C. L. Ewing, and D. J. Thomas. Human volunteer head-neck response in frontal flexion: a new analysis. Stapp Car Crash J. 39:439–460, 1995.

    Google Scholar 

  56. Van der Horst, M. J. Human head neck response in frontal, lateral and rear end impact. PhD Thesis, Eindhoven University of Technology, 2002.

  57. Van Ee, C. A., A. L. Chasse, and B. S. Myers. Quantifying skeletal muscle properties in cadaveric test specimens: effects of mechanical loading, postmortem time, and freezer storage. J. Biomech. Eng. 122(1):9–14, 2000.

    Article  PubMed  Google Scholar 

  58. Walker, L., E. Harris, and U. Pontius. Mass, volume, center of mass, and mass moment of inertia of head and head and neck of human body. Stapp Car Crash J. 17:525–537, 1973.

    Google Scholar 

  59. Winkelstein, B. A., R. W. Nightingale, W. J. Richardson, and B. S. Myers. The cervical facet capsule and its role in whiplash injury: a biomechanical investigation. Spine 25(10):1238–1246, 2000.

    Article  PubMed  CAS  Google Scholar 

  60. Winters, J. How detailed should muscle models be to understand multi-joint movement coordination? Hum. Mov. Sci. 14(4–5):401–442, 1995.

    Article  Google Scholar 

  61. Winters, J. M., and L. Stark. Estimated mechanical properties of synergistic muscles involved in movements of a variety of human joints. J. Biomech. 21(12):1027–1041, 1988.

    Article  PubMed  CAS  Google Scholar 

  62. Winters, J., and S. L. Woo. Multiple Muscle Systems: Biomechanics and Movement Organization. New York: Springer, 1990.

    Google Scholar 

  63. Yang, K. H., and V. L. Kish. Compressibility measurement of human intervertebral nucleus pulposus. J. Biomech. 21(10):1–3, 1988.

    Article  Google Scholar 

  64. Yoganandan, N., S. Kumaresan, and F. A. Pintar. Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling. Clin. Biomech. 16(1):1–27, 2001.

    Article  CAS  Google Scholar 

  65. Yoganandan, N., F. Pintar, J. Butler, J. Reinartz, A. Sances, S. J. Larson, et al. Dynamic response of human cervical spine ligaments. Spine 14(10):1102–1110, 1989.

    Article  PubMed  CAS  Google Scholar 

  66. Zuby, D. S., and A. K. Lund. Preventing minor neck injuries in rear crashes—forty years of progress. J. Occup. Environ. Med. 52(4):428–433, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the Global Human Body Models Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane S. Cronin.

Additional information

Associate Editor Stefan M Duma oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fice, J.B., Cronin, D.S. & Panzer, M.B. Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact. Ann Biomed Eng 39, 2152–2162 (2011). https://doi.org/10.1007/s10439-011-0315-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0315-4

Keywords

Navigation