Skip to main content

Advertisement

Log in

Sensitivity Analysis of an Image-Based Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

An MR image-based computational model of a murine KHT sarcoma is presented that allows the calculation of plasma fluid and solute transport within tissue. Such image-based models of solid tumors may be used to optimize patient-specific therapies. This model incorporates heterogeneous vasculature and tissue porosity to account for nonuniform perfusion of an MR-visible tracer, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was conducted following intravenous infusion of Gd-DTPA to provide 1 h of tracer-concentration distribution data within tissue. Early time points (19 min) were used to construct 3D K trans and porosity maps using a two-compartment model; tracer transport was predicted at later time points using a 3D porous media model. Model development involved selecting an arterial input function (AIF) and conducting a sensitivity analysis of model parameters (tissue, vascular, and initial estimation of solute concentration in plasma) to investigate the effects on transport for a specific tumor. The developed model was then used to predict transport in two additional tumors. The sensitivity analysis suggests that plasma fluid transport is more sensitive to parameter changes than solute transport due to the dominance of transvascular exchange. Gd-DTPA distribution was similar to experimental patterns, but differences in Gd-DTPA magnitude at later time points may result from inaccurate selection of AIF. Thus, accurate AIF estimation is important for later time point prediction of low molecular weight tracer or drug transport in smaller tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aref, M., M. Brechbiel, and E. C. Wiener. Identifying tumor vascular permeability heterogeneity with magnetic resonance imaging contrast agents. Invest. Radiol. 37:178–192, 2002.

    Article  PubMed  Google Scholar 

  2. Baudelet, C., R. Ansiaux, B. F. Jordan, X. Havaux, B. Macq, and B. Gallez. Physiological noise in murine solid tumours using T2*-weighted gradient-echo imaging: a marker of tumour acute hypoxia? Phys. Med. Biol. 49:3389–3411, 2004.

    Article  PubMed  Google Scholar 

  3. Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. 1. Role of interstitial pressure and convection. Microvasc. Res. 37:77–104, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. 2. Role of heterogeneous perfusion and lymphatics. Microvasc. Res. 40:246–263, 1990.

    Article  PubMed  CAS  Google Scholar 

  5. Boucher, Y., L. T. Baxter, and R. K. Jain. Interstitial pressure-gradients in tissue-isolated and subcutaneous tumors—implications for therapy. Cancer Res. 50:4478–4484, 1990.

    PubMed  CAS  Google Scholar 

  6. Boucher, Y., and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 52:5110–5114, 1992.

    PubMed  CAS  Google Scholar 

  7. Boucher, Y., J. M. Kirkwood, D. Opacic, M. Desantis, and R. K. Jain. Interstitial hypertension in superficial metastatic melanomas in humans. Cancer Res. 51:6691–6694, 1991.

    PubMed  CAS  Google Scholar 

  8. Chang, S. F., C. A. Chang, D. Y. Lee, P. L. Lee, Y. M. Yeh, C. R. Yeh, C. K. Cheng, S. Chien, and J. J. Chiu. Tumor cell cycle arrest induced by shear stress: roles of integrins and Smad. Proc. Natl. Acad. Sci. USA 105:3927–3932, 2008.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, X. M., G. W. Astary, H. Sepulveda, T. H. Mareci, and M. Sarntinoranont. Quantitative assessment of macromolecular concentration during direct infusion into an agarose hydrogel phantom using contrast-enhanced MRI. Magn. Reson. Imaging 26:1433–1441, 2008.

    Article  PubMed  CAS  Google Scholar 

  10. Deng, J., T. K. Rhee, K. T. Sato, R. Salem, K. Haines, T. Paunesku, M. F. Mulcahy, F. H. Miller, R. A. Omary, and A. C. Larson. In vivo diffusion-weighted imaging of liver tumor necrosis in the VX2 rabbit model at 1.5 Tesla. Invest. Radiol. 41:410–414, 2006.

    Article  PubMed  Google Scholar 

  11. Diehl, K. H., R. Hull, D. Morton, R. Pfister, Y. Rabemampianina, D. Smith, J. M. Vidal, and C. van de Vorstenbosch. A good practice guide to the administration of substances and removal of blood, including routes and volumes. J. Appl. Toxicol. 21:15–23, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Dreher, M. R., W. G. Liu, C. R. Michelich, M. W. Dewhirst, F. Yuan, and A. Chilkoti. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer I 98:335–344, 2006.

    Article  CAS  Google Scholar 

  13. Eikenberry, S. A tumor cord model for doxorubicin delivery and dose optimization in solid tumors. Theor. Biol. Med. Model. 6:16, 2009.

    Article  PubMed  Google Scholar 

  14. Elkareh, A. W., and T. W. Secomb. Effect of increasing vascular hydraulic conductivity on delivery of macromolecular drugs to tumor cells. Int. J. Radiat. Oncol. Biol. Phys. 32:1419–1423, 1995.

    Article  CAS  Google Scholar 

  15. Foy, B. D., and J. Blake. Diffusion of paramagnetically labeled proteins in cartilage: enhancement of the 1-D NMR imaging technique. J. Magn. Reson. 148:126–134, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Furman-Haran, E., D. Grobgeld, and H. Degani. Dynamic contrast-enhanced imaging and analysis at high spatial resolution of MCF7 human breast tumors. J. Magn. Reson. 128:161–171, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Fyles, A., M. Milosevic, M. Pintilie, and R. P. Hill. Long-term performance of hypoxia and IFP as prognostic factors in cervix cancer. Radiother. Oncol. 78:67, 2006.

    Article  Google Scholar 

  18. Gordon, M. J., K. C. Chu, A. Margaritis, A. J. Martin, C. R. Ethier, and B. K. Rutt. Measurement of Gd-DTPA diffusion through PVA hydrogel using a novel magnetic resonance imaging method. Biotechnol. Bioeng. 65:459–467, 1999.

    Article  PubMed  CAS  Google Scholar 

  19. Gutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E. Kastenbauer, and R. K. Jain. Interstitial hypertension in head and neck tumors in patients—correlation with tumor size. Cancer Res. 52:1993–1995, 1992.

    PubMed  CAS  Google Scholar 

  20. Guyton, A. C., H. J. Granger, and A. E. Taylor. Interstitial fluid pressure. Physiol. Rev. 51:527–563, 1971.

    PubMed  CAS  Google Scholar 

  21. Guyton, A. C., K. Scheel, and D. Murphree. Interstitial fluid pressure. 3. Its effect on resistance to tissue fluid mobility. Circ. Res. 19:412–419, 1966.

    PubMed  CAS  Google Scholar 

  22. Hassid, Y., E. Furman-Haran, R. Margalit, R. Eilam, and H. Degani. Noninvasive magnetic resonance imaging of transport and interstitial fluid pressure in ectopic human lung tumors. Cancer Res. 66:4159–4166, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Heilmann, M., C. Walczak, J. Vautier, J. L. Dimicoli, C. D. Thomas, M. Lupu, J. Mispelter, and A. Volk. Simultaneous dynamic T1 and T2* measurement for AIF assessment combined with DCE MRI in a mouse tumor model. MAGMA 20:193–203, 2007.

    Article  PubMed  Google Scholar 

  24. Herneth, A. M., S. Guccione, and M. Bednarski. Apparent diffusion coefficient: a quantitative parameter for in vivo tumor characterization. Eur. J. Radiol. 45:208–213, 2003.

    Article  PubMed  Google Scholar 

  25. Jain, R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 6:559–593, 1987.

    Article  PubMed  CAS  Google Scholar 

  26. Jain, R. K., and L. T. Baxter. Mechanisms of heterogeneous distribution of monoclonal-antibodies and other macromolecules in tumors—significance of elevated interstitial pressure. Cancer Res. 48:7022–7032, 1988.

    PubMed  CAS  Google Scholar 

  27. Khaled, A. R. A., and K. Vafai. The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46:4989–5003, 2003.

    Article  Google Scholar 

  28. Kim, J. H., G. W. Astary, X. Chen, T. H. Mareci, and M. Sarntinoranont. Voxelized model of interstitial transport in the rat spinal cord following direct infusion into white matter. J. Biomech. Eng. 131:071007, 2009.

    Article  PubMed  Google Scholar 

  29. Linninger, A. A., M. R. Somayaji, T. Erickson, X. Guo, and R. D. Penn. Computational methods for predicting drug transport in anisotropic and heterogeneous brain tissue. J. Biomech. 41:2176–2187, 2008.

    Article  PubMed  Google Scholar 

  30. Lyng, H., O. Haraldseth, and E. K. Rofstad. Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn. Reson. Med. 43:828–836, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Maier, C. F., Y. Paran, P. Bendel, B. K. Rutt, and H. Degani. Quantitative diffusion imaging in implanted human breast tumors. Magn. Reson. Med. 37:576–581, 1997.

    Article  PubMed  CAS  Google Scholar 

  32. Milosevic, M., A. Fyles, D. Hedley, M. Pintilie, W. Levin, L. Manchul, and R. Hill. Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res. 61:6400–6405, 2001.

    PubMed  CAS  Google Scholar 

  33. Milosevic, M. F., A. W. Fyles, and R. P. Hill. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis. Int. J. Radiat. Oncol. Biol. Phys. 43:1111–1123, 1999.

    Article  PubMed  CAS  Google Scholar 

  34. Nathanson, S. D., and L. Nelson. Interstitial fluid pressure in breast-cancer, benign breast conditions, and breast parenchyma. Ann. Surg. Oncol. 1:333–338, 1994.

    PubMed  CAS  Google Scholar 

  35. Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60:2497–2503, 2000.

    PubMed  CAS  Google Scholar 

  36. Paulson, O. B., M. M. Hertz, T. G. Bolwig, and N. A. Lassen. Filtration and diffusion of water across the blood–brain barrier in man. Microvasc. Res. 13:113–124, 1977.

    Article  PubMed  CAS  Google Scholar 

  37. Pozrikidis, C., and D. A. Farrow. A model of fluid flow in solid tumors. Ann. Biomed. Eng. 31:181–194, 2003.

    Article  PubMed  CAS  Google Scholar 

  38. Pusenjak, J., and D. Miklavcic. Modeling of interstitial fluid pressure in solid tumor. Simul. Pract. Theory 8:17–24, 2000.

    Article  Google Scholar 

  39. Radjenovic, A., J. P. Ridgway, and M. A. Smith. A method for pharmacokinetic modelling of dynamic contrast enhanced MRI studies of rapidly enhancing lesions acquired in a clinical setting. Phys. Med. Biol. 51:N187–N197, 2006.

    Article  PubMed  CAS  Google Scholar 

  40. Rozijn, T. H., B. P. van der Sanden, A. Heerschap, J. H. Creyghton, and W. M. Bovee. Determination of in vivo rat muscle Gd-DTPA relaxivity at 6.3 T. MAGMA 9:65–71, 1999.

    Article  PubMed  CAS  Google Scholar 

  41. Sarntinoranont, M., X. M. Chen, J. B. Zhao, and T. H. Mareci. Computational model of interstitial transport in the spinal cord using diffusion tensor imaging. Ann. Biomed. Eng. 34:1304–1321, 2006.

    Article  PubMed  Google Scholar 

  42. Sevick, E. M., and R. K. Jain. Measurement of capillary filtration coefficient in a solid tumor. Cancer Res. 51:1352–1355, 1991.

    PubMed  CAS  Google Scholar 

  43. Smith, J. H., and J. A. C. Humphrey. Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue. Microvasc. Res. 73:58–73, 2007.

    Article  PubMed  CAS  Google Scholar 

  44. Stohrer, M., Y. Boucher, M. Stangassinger, and R. K. Jain. Oncotic pressure in solid tumors is elevated. Cancer Res. 60:4251–4255, 2000.

    PubMed  CAS  Google Scholar 

  45. Swabb, E. A., J. Wei, and P. M. Gullino. Diffusion and convection in normal and neoplastic tissues. Cancer Res. 34:2814–2822, 1974.

    PubMed  CAS  Google Scholar 

  46. Swartz, M. A., and M. E. Fleury. Interstitial flow and its effects in soft tissues. Annu. Rev. Biomed. Eng. 9:229–256, 2007.

    Article  PubMed  CAS  Google Scholar 

  47. Tan, W. H. K., F. J. Wang, T. Lee, and C. H. Wang. Computer simulation of the delivery of etanidazole to brain tumor from PLGA wafers: comparison between linear and double burst release systems. Biotechnol. Bioeng. 82:278–288, 2003.

    Article  PubMed  CAS  Google Scholar 

  48. Tofts, P. S., and A. G. Kermode. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn. Reson. Med. 17:357–367, 1991.

    Article  PubMed  CAS  Google Scholar 

  49. Truskey, G. A., F. Yuan, and D. F. Katz. Transport Phenomena in Biological Systems. Upper Saddle River: Pearson Prentice Hall, 2004; (710 pp).

    Google Scholar 

  50. Victorino, G. P., R. M. Ramirez, T. J. Chong, B. Curran, and J. Sadjadi. Ischemia-reperfusion injury in rats affects hydraulic conductivity in two phases that are temporally and mechanistically separate. Am. J. Physiol. Heart C. 295:H2164–H2171, 2008.

    Article  CAS  Google Scholar 

  51. Weinmann, H. J., M. Laniado, and W. Mutzel. Pharmacokinetics of Gddtpa dimeglumine after intravenous-injection into healthy-volunteers. Physiol. Chem. Phys. 16:167–172, 1984.

    CAS  Google Scholar 

  52. Young, J. S., C. E. Lumsden, and A. L. Stalker. The significance of the tissue pressure of normal testicular and of neoplastic (Brown-Pearce carcinoma) tissue in the rabbit. J. Pathol. Bacteriol. 62:313–333, 1950.

    Article  PubMed  CAS  Google Scholar 

  53. Zhao, J., H. Salmon, and M. Sarntinoranont. Effect of heterogeneous vasculature on interstitial transport within a solid tumor. Microvasc. Res. 73:224–236, 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Dietmar Siemann, Dr. Lori Rice, and Chris Pampo for providing the murine KHT sarcoma cells and tumor inoculation. This research was funded by the University of Florida’s Research and Graduate Programs Opportunity Fund and a grant from the National Institutes of Health (R21 NS05270). MR data was obtained at the Advanced Magnetic Resonance Imaging and Spectroscopy facility in the McKnight Brain Institute of the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malisa Sarntinoranont.

Additional information

Associate Editor Jeffrey L. Duerk oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pishko, G.L., Astary, G.W., Mareci, T.H. et al. Sensitivity Analysis of an Image-Based Solid Tumor Computational Model with Heterogeneous Vasculature and Porosity. Ann Biomed Eng 39, 2360–2373 (2011). https://doi.org/10.1007/s10439-011-0349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-011-0349-7

Keywords

Navigation