Skip to main content
Log in

A Survey of Methods for the Evaluation of Tissue Engineering Scaffold Permeability

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The performance of porous scaffolds for tissue engineering (TE) applications is evaluated, in general, in terms of porosity, pore size and distribution, and pore tortuosity. These descriptors are often confounding when they are applied to characterize transport phenomena within porous scaffolds. On the contrary, permeability is a more effective parameter in (1) estimating mass and species transport through the scaffold and (2) describing its topological features, thus allowing a better evaluation of the overall scaffold performance. However, the evaluation of TE scaffold permeability suffers of a lack of uniformity and standards in measurement and testing procedures which makes the comparison of results obtained in different laboratories unfeasible. In this review paper we summarize the most important features influencing TE scaffold permeability, linking them to the theoretical background. An overview of methods applied for TE scaffold permeability evaluation is given, presenting experimental test benches and computational methods applied (1) to integrate experimental measurements and (2) to support the TE scaffold design process. Both experimental and computational limitations in the permeability evaluation process are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

ε :

Porosity, dimensionless

V V :

Volume of void space (m3)

V :

Total volume of the scaffold (m3)

ε e :

Effective porosity, dimensionless

V mw :

Volume of the pores containing water that is free to move through the saturate system (m3)

V S :

Volume of the solid phase (m3)

V iw :

Volume of immobile pores containing the fluid in the dead-end pores (m3)

D p :

Pore diameter (m)

r p :

Pore radius (m)

S p :

Pore area obtained by binarized images (m2)

P p :

Pore perimeter obtained by binarized images (m)

T :

Tortuosity, dimensionless

L :

Scaffold thickness in the direction of macroscopic flow (m)

L 0 :

Actual hydraulic path-length (m)

s :

Specific surface area (m−1)

SW :

Total surface area of pore walls available for cell adhesion (m2)

μ :

Dynamic viscosity (Pa s)

U :

Linear flow velocity (m s−1)

k :

Darcian permeability of porous medium (m2)

Q :

Volumetric flow rate (m3 s−1)

A :

Surface area of the scaffold (m2)

k nDarcy :

Non-Darcian permeability of porous medium (m)

c K :

Empirical Kozeny constant, dimensionless

ΔP sec :

Pressure drop related to section change (Pa)

v :

Fluid velocity = Q/A (m s−1)

K :

Hydraulic conductivity (m s−1)

i :

Hydraulic gradient, dimensionless

H :

Distance between two free water surfaces, dimensionless

r :

Radius of the scaffold sample (m)

a :

Cross-sectional area of the standpipe (m2)

\( \dot{M}_{{{\text{B}}1}} \) :

Mass flow rate without scaffold (kg s−1)

\( \dot{M}_{{{\text{B}}2}} \) :

Mass flow rate with scaffold (kg s−1)

R w :

Radius of the water outlet (m)

η :

Percent compression, dimensionless

ρ*/ρ s :

Scaffold relative density, dimensionless

\( \bar{\tau } \) :

Shear stress (Pa)

References

  1. Acosta Santamaría, V., H. Deplaine, D. Mariggió, A. R. Villanueva-Molines, J. M. García-Aznar, J. L. Gómez Ribelles, M. Doblaré, G. Gallego Ferrer, and I. Ochoa. Influence of the macro and micro-porous structure on the mechanical behavior of poly(l-lactic acid) scaffolds. J. Non Cryst. Solids 358(23):3141–3149, 2012.

    Article  Google Scholar 

  2. Agrawal, C. M., J. McKinney, D. Lanctot, and K. A. Athanasiou. Effect of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials 21:2443–2452, 2000.

    Article  PubMed  CAS  Google Scholar 

  3. Al-Munajjed, A., M. Hien, R. Kujat, J. P. Gleeson, and J. Hammer. Influence of pore size on tensile strength, permeability and porosity of hyaluronan–collagen scaffolds. J. Mater. Sci. Mater. Med. 19(8):2859–2864, 2008.

    Article  PubMed  CAS  Google Scholar 

  4. Anderson, E. J., and M. L. Knothe Tate. Design of tissue engineering scaffolds as delivery devices for mechanical and mechanically modulated signals. Tissue Eng. 13(10):2525–2538, 2007.

    Article  PubMed  CAS  Google Scholar 

  5. Asha, S. Comparison of Permeability in Constant Head and Falling Head Method: Comparison of Permeability in Constant Head and Falling Head Method and Establishment of Empirical Relationship Between Them. Saarbrücken: Lambert Academic Publishing, 2010.

    Google Scholar 

  6. Bagarello, V., M. Iovinoa, and D. Elrickb. A simplified falling-head technique for rapid determination of field-saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 68(1):66–73, 2004.

    Article  CAS  Google Scholar 

  7. Bear, J. Dynamics of Fluids in Porous Media. New York: Dover, 1972.

    Google Scholar 

  8. Botchwey, E., M. A. Dupree, S. R. Pollack, E. M. Levine, and C. T. Laurentin. Tissue engineered bone: measurement of nutrient transport in three-dimensional matrices. J. Biomed. Mater. Res. A 67(1):357–367, 2003.

    Article  PubMed  Google Scholar 

  9. Cantini, M., G. B. Fiore, A. Redaelli, and M. Soncini. Numerical fluid-dynamic optimization of microchannel-provided porous scaffolds for the co-culture of adherent and non-adherent cells. Tissue Eng. A 15(3):615–623, 2009.

    Article  CAS  Google Scholar 

  10. Carman, P. C. Flow of Gases Through Porous Media. New York: Academic Press, 1956.

    Google Scholar 

  11. Chor, M. V., and W. Li. A permeability measurement system for tissue engineering scaffolds. Meas. Sci. Technol. 18(1):208–216, 2007.

    Article  CAS  Google Scholar 

  12. Cioffi, M., F. Boschetti, M. T. Raimondi, and G. Dubini. Modeling evaluation of the fluid dynamic microenvironment in TE constructs: a microCT based model. Biotechnol. Bioeng. 93(3):500–510, 2006.

    Article  PubMed  CAS  Google Scholar 

  13. Dias, M. R., P. R. Fernandes, J. M. Guedes, and S. J. Hollister. Permeability analysis of scaffolds for bone tissue engineering. J. Biomech. 45(6):938–944, 2012.

    Article  PubMed  CAS  Google Scholar 

  14. Ergun, S. Fluid flow through packed columns. Chem. Eng. Prog. 48:89–94, 1952.

    CAS  Google Scholar 

  15. Fwa, T. F., S. A. Tan, and C. T. Chuai. Permeability measurement of base materials using falling-head test apparatus. Transp. Res. Rec. 1615:94–99, 1998.

    Article  Google Scholar 

  16. Grimm, M., and J. Williams. Measurements of permeability in human calcaneal trabecular bone. J. Biomech. 30(7):743–745, 1997.

    Article  PubMed  CAS  Google Scholar 

  17. Haddock, S. M., J. C. Debes, E. A. Nauman, K. E. Fong, Y. P. Arramon, and T. M. Keaveny. Structure–function relationships for coralline hydroxyapatite bone substitute. J. Biomed. Mater. Res. 47(1):71–78, 1999.

    Article  PubMed  CAS  Google Scholar 

  18. Handley, D., and P. J. Heggs. Momentum and heat transfer mechanism in regular shaped packings. Trans. Inst. Chem. Eng. Lond. 46:251–259, 1968.

    Google Scholar 

  19. Haugen, H., J. Will, A. Kohler, U. Hopfner, J. Aigner, and E. Wintermante. Ceramic TiO2-foams: characterization of potential scaffold. J. Eur. Ceram. Soc. 24(4):661–668, 2004.

    Article  CAS  Google Scholar 

  20. Hillsley, M. V., and J. A. Frangos. Bone tissue engineering: the role of interstitial fluid flow. Biotechnol. Bioeng. 43(7):573–581, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. Ho, S. T., and D. W. Hutmacher. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 27(8):1362–1376, 2006.

    Article  PubMed  CAS  Google Scholar 

  22. Hou, Q. P., D. W. Grijpma, and J. Feijen. Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24(11):1937–1947, 2003.

    Article  PubMed  CAS  Google Scholar 

  23. Hui, P. W., P. C. Leung, and A. Sher. Fluid conductance of cancellous bone graft as a predictor for graft-host interface healing. J. Biomech. 29(1):123–132, 1996.

    Article  PubMed  CAS  Google Scholar 

  24. Impens, S., Y. Chen, S. Mullens, F. Luyten, and J. Schrooten. Controlled cell-seeding methodologies: a first step toward clinically relevant bone tissue engineering strategies. Tissue Eng. C Methods 16(6):1575–1583, 2010.

    Article  CAS  Google Scholar 

  25. Innocentini, M. D. M., R. K. Faleiros, R. Pisani, I. Thijs, J. Luyten, and S. Mullens. Permeability of porous gelcast scaffolds for bone tissue engineering. J. Porous Mater. 17:615–627, 2009.

    Article  Google Scholar 

  26. Innocentini, M. D. M., V. R. Salvini, A. Macedo, and V. C. Pandolfelli. Prediction of ceramic foams permeability using Ergun’s equation. Mater. Res. 2(4):283–289, 1999.

    Article  CAS  Google Scholar 

  27. Jeong, C. G., and S. J. Hollister. Mechanical, permeability and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 93(1):141–149, 2010.

    PubMed  Google Scholar 

  28. Jeong, C. G., H. Zhang, and S. J. Hollister. Three-dimensional poly(1,8-octanediol–co-citrate) scaffold pore shape and permeability effects on sub-cutaneous in vivo chondrogenesis using primary chondrocytes. Acta Biomater. 7(2):505–514, 2011.

    Article  PubMed  CAS  Google Scholar 

  29. Karande, T. S., J. L. Ong, and C. M. Agrawal. Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann. Biomed. Eng. 32:1728–1743, 2004.

    Article  PubMed  Google Scholar 

  30. Kemppainen, J. M. Mechanically Stable Solid Freeform Fabricated Scaffolds with Permeability Optimized for Cartilage Tissue Engineering. PhD dissertation, University of Michigan, 2008.

    Google Scholar 

  31. Kemppainen, J. M., and S. J. Hollister. Differential effects of designed scaffold permeability on chondrogenesis by chondrocytes and bone marrow stromal cells. Biomaterials 31(2):279–287, 2010.

    Article  PubMed  CAS  Google Scholar 

  32. Knothe Tate, M. L., and U. Knothe. An ex vivo model to study transport processes and fluid flow in loaded bone. J. Biomech. 33(2):247–254, 2000.

    Article  PubMed  CAS  Google Scholar 

  33. Kohles, S. S., J. B. Roberts, M. L. Upton, C. G. Wilson, L. J. Bonassar, and A. L. Schlichting. Direct perfusion measurement of cancellous bone anisotropic permeability. J. Biomech. 34(9):1197–1202, 2001.

    Article  PubMed  CAS  Google Scholar 

  34. Lee, K. W., S. Wang, L. Lu, E. Jabbari, B. L. Currier, and M. J. Yaszemski. Fabrication and characterization of poly(propylene fumarate) scaffolds with controlled pore structures using 3D printing and injection molding. Tissue Eng. 12(10):2801–2811, 2006.

    Article  PubMed  CAS  Google Scholar 

  35. Leong, K. F., C. M. Cheah, and C. K. Chua. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378, 2003.

    Article  PubMed  CAS  Google Scholar 

  36. Li, S., J. R. De Wijn, J. Li, P. Layrolle, and K. De Groot. Macroporous biphasic calcium phosphate scaffolds with high permeability/porosity ratio. Tissue Eng. 9(3):535–548, 2003.

    Article  PubMed  CAS  Google Scholar 

  37. Liao, E., M. Yaszemski, P. Krebsbach, and S. Hollister. Tissue engineered cartilage constructs using composite hyaluronic acid collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Tissue Eng. 13(3):537–550, 2007.

    Article  PubMed  CAS  Google Scholar 

  38. Ma, C. Y. J., R. Kumar, X. Y. Xu, and A. Mantalaris. A combined fluid dynamics mass transport and cell growth model for a 3D perfused bioreactor. Biochem. Eng. J. 35:1–11, 2007.

    Article  Google Scholar 

  39. Macdonald, I. F., M. S. El-Sayed, K. Mow, and F. A. L. Dullien. Flow through porous media—the friction in a packed bed. Ind. Eng. Chem. Fundam. 18(3):199–208, 1979.

    Article  CAS  Google Scholar 

  40. Maes, F., T. Claessens, M. Moesen, H. Van Oosterwyck, P. Van Ransbeeck, and P. Verdonck. Computational models for wall shear stress estimation in scaffolds: a comparative study of two complete geometries. J. Biomech. 45(9):1586–1592, 2012.

    Article  PubMed  CAS  Google Scholar 

  41. Mansour, J. M., and V. C. Mow. The permeability of articular cartilage under compressive strain and at high pressures. J. Bone Joint Surg. Am. 58(4):509–516, 1976.

    PubMed  CAS  Google Scholar 

  42. Melchels, F. P., A. M. Barradas, C. A. Van Blitterswijk, J. de Boer, J. Feijen, and D. W. Grijpma. Effects of the architecture of tissue engineering scaffolds on cell seeding and culturing. Acta Biomater. 6(11):4208–4217, 2010.

    Article  PubMed  CAS  Google Scholar 

  43. Moreira, E. A., M. D. M. Innocentini, and J. R. Coury. Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram. Soc. 24(10–11):3209–3218, 2004.

    Article  CAS  Google Scholar 

  44. Murphy, C. M., M. G. Haugh, and F. J. O’Brien. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31(3):461–466, 2010.

    Article  PubMed  CAS  Google Scholar 

  45. Nauman, E. A., K. E. Fong, and T. M. Keaveny. Dependence of intratrabecular permeability on flow direction and anatomic site. Ann. Biomed. Eng. 27(4):517–524, 1999.

    Article  PubMed  CAS  Google Scholar 

  46. Nerem, R. M., and A. Sambanis. Tissue engineering: from biology to biological substitutes. Tissue Eng. 1(1):3–13, 1995.

    Article  PubMed  CAS  Google Scholar 

  47. Netti, P. A., D. A. Berk, M. A. Swartz, A. J. Grodzinsky, and R. K. Jain. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 60(9):2497–2503, 2000.

    PubMed  CAS  Google Scholar 

  48. Niven, R. K. Physical insight into the Ergun and Wen & Yu equation for fluid flow in packed bed and fluidised beds. Chem. Eng. Sci. 57:527–534, 2002.

    Article  CAS  Google Scholar 

  49. O’Brien, F. J., B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, and P. J. Prendergast. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15(1):3–17, 2007.

    PubMed  Google Scholar 

  50. Ochoa, I., J. A. Sanz-Herrera, J. M. Garcia-Aznar, and M. Doblaré. Permeability evaluation of 45S5 bioglass-based scaffolds for bone tissue engineering. J. Biomech. 42(3):257–260, 2009.

    Article  PubMed  Google Scholar 

  51. Owan, I., D. B. Burr, C. H. Turner, J. Qiu, Y. Tu, and J. E. Onyia. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am. J. Physiol. 273(3 Pt 1):C810–C815, 1997.

    PubMed  CAS  Google Scholar 

  52. Plessis, J. P. Analytical quantification of coefficient if the Ergun equation for fluid friction in a packed beds. Transp. Porous Med. 16(2):189–207, 1994.

    Article  Google Scholar 

  53. Radisic, M., M. Euloth, L. Yang, R. Langer, L. E. Freed, and G. Vunjak-Novakovic. High-density seeding of myocyte cells for cardiac tissue engineering. Biotechnol. Bioeng. 82(4):403–414, 2003.

    Article  PubMed  CAS  Google Scholar 

  54. Rajagopalan, S., and R. A. Robb. Image-based metrology of porous tissue engineering scaffolds. Program Biomed. Opt. Imaging 6144:540–550, 2006.

    Google Scholar 

  55. Sanz-Herrera, J. A., C. Kasper, M. Van Griensven, J. M. Garcia-Aznar, I. Ochoa, and M. Doblaré. Mechanical and flow characterization of Sponceram carriers: evaluation by homogenization theory and experimental validation. J. Biomed. Mater. Res. B Appl. Biomater. 87(1):42–48, 2008.

    PubMed  Google Scholar 

  56. Schiavi, A., C. Guglielmone, F. Pennella, and U. Morbiducci. Acoustic method for permeability measurement of tissue-engineering scaffold. Meas. Sci. Technol. 23(10):105702, 2012.

    Article  Google Scholar 

  57. Sell, S., C. Barnes, D. Simpson, and G. Bowlin. Scaffold permeability as a means to determine fiber diameter and pore size of electrospun fibrinogen. J. Biomed. Mater. Res. A 85(1):115–126, 2008.

    PubMed  Google Scholar 

  58. Sen, P. N. Diffusion and tissue microstructure. J. Phys. Condens. Matter 16:S5213–S5220, 2004.

    Article  CAS  Google Scholar 

  59. Shimko, D. A., and E. A. Nauman. Development and characterization of a porous poly(methyl methacrylate) scaffold with controllable modulus and permeability. J. Biomed. Mater. Res. B Appl. Biomater. 80(2):360–369, 2007.

    PubMed  Google Scholar 

  60. Shimko, D. A., V. F. Shimko, E. A. Sander, K. F. Dickson, and E. A. Nauman. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 73(2):315–324, 2005.

    PubMed  Google Scholar 

  61. Singh, R., P. D. Lee, T. C. Lindley, R. J. Dashwood, E. Ferrie, and T. Imwinkelried. Characterization of the structure and permeability of titanium foams for spinal fusion devices. Acta Biomater. 5(1):477–487, 2009.

    Article  PubMed  CAS  Google Scholar 

  62. Squier, C. A., and B. K. Hall. The permeability of skin and oral mucosa to water and horseradish peroxidase as related to the thickness of the permeability barrier. J. Investig. Dermatol. 84(3):176–179, 1985.

    Article  PubMed  CAS  Google Scholar 

  63. Starly, B., E. Yildirim, and W. Sun. A tracer metric numerical model for predicting tortuosity factors in three-dimensional porous tissue scaffolds. Comput. Methods Programs Biomed. 87(1):21–27, 2007.

    Article  PubMed  CAS  Google Scholar 

  64. Succi, S. The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon: Oxford Science, 2001.

    Google Scholar 

  65. Swider, P., M. Conroy, A. Pédrono, D. Ambard, S. Mantell, K. Soballe, and J. E. Bechtold. Using of high-resolution MRI for investigation of fluid flow and global permeability in a material with interconnected porosity. J. Biomech. 40(9):2112–2118, 2007.

    Article  PubMed  Google Scholar 

  66. Truscello, S., G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study. Acta Biomater. 8(4):1648–1658, 2012.

    Article  PubMed  CAS  Google Scholar 

  67. Van Bael, S., Y. C. Chai, S. Truscello, M. Moesen, G. Kerckhofs, H. Van Oosterwyck, J.-P. Kruth, and J. Schrooten. The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. Acta Biomater. 8:2824–2834, 2012.

    Article  PubMed  Google Scholar 

  68. Voronov, R. S., S. B. Vangordon, V. I. Sikavitsas, and D. V. Papavassiliou. Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. J. Biomech. 43:1279–1286, 2010.

    Article  PubMed  Google Scholar 

  69. Vossenberg, P., G. A. Higuera, G. Van Straten, C. A. Van Blitterswijk, and A. J. B. Van Boxtel. Darcian permeability constant as indicator for shear stresses in regular scaffold systems. Biomech. Model. Mechanobiol. 8(6):499–507, 2009.

    Article  PubMed  Google Scholar 

  70. Wang, H., J. Pieper, F. Peters, C. A. van Blitterswijk, and E. N. Lamme. Synthetic scaffold morphology controls human dermal connective tissue formation. J. Biomed. Mater. Res. A 74(4):523–532, 2005.

    PubMed  Google Scholar 

  71. Wang, S., and J. M. Tarbell. Interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. J. Biomech. Eng. 117(3):358–363, 1995.

    Article  PubMed  CAS  Google Scholar 

  72. Wang, Y., P. E. Tomlins, A. G. A. Coombes, and M. Rides. On the determination of Darcy permeability coefficients for a microporous tissue scaffold. Tissue Eng. C Methods 16(2):281–289, 2010.

    Article  CAS  Google Scholar 

  73. Znati, C. A., M. Rosenstein, T. D. McKee, E. Brown, D. Turner, W. D. Bloomer, S. Watkins, R. K. Jain, and Y. Boucher. Irradiation reduces interstitial fluid transport and increases the collagen content in tumors. Clin. Cancer Res. 9(15):5508–5513, 2003.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The financial support provided by the ‘Regione Piemonte’ METREGEN project is gratefully acknowledged.

Conflict of interest

The authors indicated no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umberto Morbiducci.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pennella, F., Cerino, G., Massai, D. et al. A Survey of Methods for the Evaluation of Tissue Engineering Scaffold Permeability. Ann Biomed Eng 41, 2027–2041 (2013). https://doi.org/10.1007/s10439-013-0815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0815-5

Keywords

Navigation