Skip to main content
Log in

Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Atherosclerotic disease progression in coronary arteries is influenced by wall shear stress. To compute patient-specific wall shear stress, computational fluid dynamics (CFD) is required. In this study we propose a method for computing the pressure-drop in regions proximal and distal to a plaque, which can serve as a boundary condition in CFD. As a first step towards exploring the proposed method we investigated ten straightened coronary arteries. First, the flow fields were calculated with CFD and velocity profiles were fitted on the results. Second, the Navier–Stokes equation was simplified and solved with the found velocity profiles to obtain a pressure-drop estimate (Δp (1)). Next, Δp (1) was compared to the pressure-drop from CFD (Δp CFD) as a validation step. Finally, the velocity profiles, and thus the pressure-drop were predicted based on geometry and flow, resulting in Δp geom. We found that Δp (1) adequately estimated Δp CFD with velocity profiles that have one free parameter β. This β was successfully related to geometry and flow, resulting in an excellent agreement between Δp CFD and Δp geom: 3.9 ± 4.9% difference at Re = 150. We showed that this method can quickly and accurately predict pressure-drop on the basis of geometry and flow in straightened coronary arteries that are mildly diseased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bessems, D., M. Rutten, and F. Van De Vosse. A wave propagation model of blood flow in large vessels using an approximate velocity profile function. J. Fluid Mech. 580:145–168, 2007.

    Article  Google Scholar 

  2. Falk, E., P. K. Shah, and V. Fuster. Coronary Plaque Disruption. Circulation 92(3):657–671, 1995.

    Article  CAS  PubMed  Google Scholar 

  3. Formaggia, L., et al. On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput. Methods Appl. Mech. Eng. 191:561–582, 2001.

    Article  Google Scholar 

  4. Fukumoto, Y., et al. Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in vivo color mapping of shear stress distribution. J. Am. Coll. Cardiol. 51(6):645–650, 2008.

    Article  PubMed  Google Scholar 

  5. Gijsen, F. J. H., et al. Shear stress and advanced atherosclerosis in human coronary arteries. J. Biomech. 46(2):240–247, 2013.

    Article  PubMed  Google Scholar 

  6. Girasis, C., et al. Novel bifurcation phantoms for validation of quantitative coronary angiography algorithms. Catheter. Cardiovasc. Interv. 77(6):790–797, 2011.

    Article  PubMed  Google Scholar 

  7. Gould, K. L., K. O. Kelley, and E. L. Bolson. Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 66(5):930–937, 1982.

    Article  CAS  PubMed  Google Scholar 

  8. Huberts, W., et al. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34(2):233–248, 2012.

    Article  CAS  PubMed  Google Scholar 

  9. Hughes, J. R., and J. Lubliner. On the One-Dimensional Theory of Blood Flow in the Larger Vessels. Math. Biosci. 18:161–170, 1973.

    Article  Google Scholar 

  10. Huo, Y., and G. S. Kassab. Pulsatile blood flow in the entire coronary arterial tree: theory and experiment. Am. J. Phys. Heart Circ. Physiol. 291(3):H1074–H1087, 2006.

    Article  CAS  Google Scholar 

  11. Huo, Y., and G. S. Kassab. A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree. Am. J. Phys. Heart Circ. Phys. 292(6):H2623–H2633, 2007.

    CAS  Google Scholar 

  12. Kim, H. J., et al. On coupling a lumped parameter heart model and a three-dimensional finite element aorta model. Ann. Biomed. Eng. 37(11):2153–2169, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, H. J., K. E. Jansen, and C. A. Taylor. Incorporating autoregulatory mechanisms of the cardiovascular system in three-dimensional finite element models of arterial blood flow. Ann. Biomed. Eng. 38(7):2314–2330, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Kroon, W., et al. A numerical method of reduced complexity for simulating vascular hemodynamics using coupled 0D lumped and 1D wave propagation models. Comput. Math. Methods Med. 2012:156094, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Mollet, N. R., et al. Noninvasive assessment of coronary plaque burden using multislice computed tomography. Am. J. Cardiol. 95(10):1165–1169, 2005.

    Article  PubMed  Google Scholar 

  16. Olufsen, M. S. Structured tree outflow condition for blood flow in larger systemic arteries Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. Heart Circ. Physiol. 276:257–268, 1999.

    Google Scholar 

  17. Pahlevan, N. M., et al. A physiologically relevant, simple outflow boundary model for truncated vasculature. Ann. Biomed. Eng. 39(5):1470–1481, 2011.

    Article  PubMed  Google Scholar 

  18. Pijls, N. H., et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. New Engl. J. Med. 334(26):1703–1708, 1996.

    Article  CAS  PubMed  Google Scholar 

  19. Reymond, P., et al. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circ. Physiol. 297(1):H208–H222, 2009.

    Article  CAS  PubMed  Google Scholar 

  20. Samady, H., et al. Coronary artery wall shear stress is associated with progression and transformation of atherosclerotic plaque and arterial remodeling in patients with coronary artery disease. Circulation 124(7):779–788, 2011.

    Article  CAS  PubMed  Google Scholar 

  21. Schaar, J. A., et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur. Heart J. 25(12):1077–1082, 2004.

    Article  PubMed  Google Scholar 

  22. Schrauwen, J., et al. Geometry-based pressure drop prediction in mildly diseased human coronary arteries. J. Biomech. 47(8):1810–1815, 2014.

    Article  CAS  PubMed  Google Scholar 

  23. Stone, G. W., et al. A prospective natural-history study of coronary atherosclerosis. New Engl. J. Med. 364(3):226–235, 2011.

    Article  CAS  PubMed  Google Scholar 

  24. Stone, P. H., et al. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126(2):172–181, 2012.

    Article  PubMed  Google Scholar 

  25. Taylor, C. A., and C. A. Figueroa. Patient-specific modeling of cardiovascular mechanics. Ann. Rev. Biomed. Eng. 11:109–134, 2009.

    Article  CAS  Google Scholar 

  26. Tu, S., et al. In vivo assessment of bifurcation optimal viewing angles and bifurcation angles by three-dimensional (3D) quantitative coronary angiography. Int. J. Cardiovasc. Imaging 28(7):1617–1625, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Van de Vosse, F. N., and N. Stergiopulos. Pulse wave propagation in the arterial tree. Ann. Rev. Fluid Mech. 43(1):467–499, 2011.

    Article  Google Scholar 

  28. Van der Giessen, A. G., et al. The influence of boundary conditions on wall shear stress distribution in patients specific coronary trees. J. Biomech. 44(6):1089–1095, 2011.

    Article  PubMed  Google Scholar 

  29. Van der Horst, A. et al. Towards patient-specific modeling of coronary hemodynamics in healthy and diseased state. Comput. Math. Methods. Med. 15, 2013.

  30. Vignon-Clementel, I. E., et al. Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Comput. Methods Appl. Mech. Eng. 195(29–32):3776–3796, 2006.

    Article  Google Scholar 

  31. Virmani, R., et al. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20:1262–1275, 2000.

    Article  CAS  PubMed  Google Scholar 

  32. Wan, J., et al. A one-dimensional finite element method for simulation-based medical planning for cardiovascular disease. Comput. Methods Biomech. Biomed. Eng. 5(3):195–206, 2002.

    Article  Google Scholar 

  33. Wentzel, J. J., et al. Endothelial shear stress in the evolution of coronary atherosclerotic plaque and vascular remodelling: current understanding and remaining questions. Cardiovasc. Res. 96(2):234–243, 2012.

    Article  CAS  PubMed  Google Scholar 

  34. Young, D., and F. Tsai. Flow characteristics in model of aterial stenosis—I steady flow. J. Biomech. 6(4):395–410, 1973.

    Article  CAS  PubMed  Google Scholar 

  35. Young, D., and F. Tsai. Flow characteristics in models of arterial stenoses—II unsteady flow. J. Biomech. 6(1955):547–559, 1973.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was performed within the framework of the CARISMA-program of STW (Stichting Wetenschap en Techniek), as well as funded by STW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelle T. C. Schrauwen.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrauwen, J.T.C., Koeze, D.J., Wentzel, J.J. et al. Fast and Accurate Pressure-Drop Prediction in Straightened Atherosclerotic Coronary Arteries. Ann Biomed Eng 43, 59–67 (2015). https://doi.org/10.1007/s10439-014-1090-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1090-9

Keywords

Navigation