Skip to main content

Advertisement

Log in

Prediction of the Biomechanical Effects of Compression Therapy on Deep Veins Using Finite Element Modelling

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Clinicians generally assume that Medical Compression Stockings (MCS) work by reducing vein luminal diameter and, in this way, help to prevent blood pooling. Conflicting results have been reported however in the case of lower leg deep veins which call into question this hypothesis. The purpose of this contribution is to study the biomechanical response of the main lower leg deep veins to elastic compression and muscle contraction with the objective of improving our current understanding of the mechanism by which MCS convey their benefits. The development of a finite-element model of a slice of the lower leg from MR images is detailed. Analysis of the finite-element model shows that the contribution of the MCS to the deep vein diameter reduction is rather small, and in fact negligible, compared to that of the contracting muscle (3 and 9% decrease in the vein cross-sectional area with a grade II compression stocking in the supine and standing positions respectively, while complete collapse was obtained at the end of muscle activation). A more accurate representation of the muscle activation is eventually proposed to study the effect of muscle contraction on a vein wall. The impact on the venous blood draining is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. AFNOR. NF G30-102. Article de bonneterie—Détermination de la pression de contention. AFNOR, 1986.

  2. Agu, O., G. Hamilton, and D. Baker. Graduated compression stockings in the prevention of venous thromboembolism. Br. J. Surg. 86:992–1004, 1999.

    Article  CAS  PubMed  Google Scholar 

  3. Albin, T. J. In vivo estimation of the coefficient of friction between extrinsic flexor tendons and surrounding structures in the carpal tunnel. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 31:323–324, 1987.

    Article  Google Scholar 

  4. Bassez, S., P. Flaud, and M. Chauveau. Modeling of the deformation of flexible tubes using a single law: application to veins of the lower limb in man. J. Biomech. Eng. 123:58–65, 2000.

    Article  Google Scholar 

  5. Blemker, S. S., P. M. Pinsky, and S. L. Delp. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38:657–665, 2005.

    Article  PubMed  Google Scholar 

  6. Bouman, A. C., and A. ten Cate-Hoek. Timing and duration of compression therapy after deep vein thrombosis. Phlebology 29:78–82, 2014.

    Article  PubMed  Google Scholar 

  7. Dai, G., J. P. Gertler, and R. D. Kamm. The effects of external compression on venous blood flow and tissue deformation in the lower leg. J. Biomech. Eng. 121:557, 1999.

    Article  CAS  PubMed  Google Scholar 

  8. Dolibog, P., A. Franek, J. Taradaj, P. Dolibog, E. Blaszczak, A. Polak, L. Brzezinska-Wcislo, A. Hrycek, T. Urbanek, J. Ziaja, and M. Kolanko. A comparative clinical study on five types of compression therapy in patients with venous leg ulcers. Int. J. Med. Sci. 11:34–43, 2014.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Downie, S. P., S. M. Raynor, D. N. Firmin, N. B. Wood, S. A. Thom, A. D. Hughes, K. H. Parker, J. H. N. Wolfe, and X. Y. Xu. Effects of elastic compression stockings on wall shear stress in deep and superficial veins of the calf. Am. J. Physiol. Heart Circ. Physiol. 294:H2112–H2120, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Eberhardt, R. T., and J. D. Raffetto. Chronic venous insufficiency. Circulation 111:2398–2409, 2005.

    Article  PubMed  Google Scholar 

  11. Gloviczki, P., A. J. Comerota, M. C. Dalsing, B. G. Eklof, D. L. Gillespie, M. L. Gloviczki, J. M. Lohr, R. B. McLafferty, M. H. Meissner, M. H. Murad, F. T. Padberg, P. J. Pappas, M. A. Passman, J. D. Raffetto, M. A. Vasquez, and T. W. Wakefield. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. J. Vasc. Surg. 53:2S–48S, 2011.

    Article  PubMed  Google Scholar 

  12. Grenier, E., C. Gehin, B. Lun, and E. McAdams. Local effect of compression stockings on skin microcirculatory activity through the measurement of skin effective thermal conductivity. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., Vol. 1, pp. 1768–1771, 2013.

  13. Han, H.-C. A biomechanical model of artery buckling. J. Biomech. 40:3672–3678, 2007.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Ibegbuna, V., K. T. Delis, A. N. Nicolaides, and O. Aina. Effect of elastic compression stockings on venous hemodynamics during walking. J. Vasc. Surg. 37:420–425, 2003.

    Article  PubMed  Google Scholar 

  15. Jenkyn, T. R., B. Koopman, P. Huijing, R. L. Lieber, and K. R. Kaufman. Finite element model of intramuscular pressure during isometric contraction of skeletal muscle. Phys. Med. Biol. 47:4043, 2002.

    Article  PubMed  Google Scholar 

  16. Kamm, R. D. Bioengineering studies of periodic external compression as prophylaxis against deep vein thrombosis-part I: numerical studies. J. Biomech. Eng. 104:87–95, 1982.

    Article  CAS  PubMed  Google Scholar 

  17. Kamm, R. D., and A. H. Shapiro. Unsteady flow in a collapsible tube subjected to external pressure or body forces. J. Fluid Mech. 95:1–78, 1979.

    Article  Google Scholar 

  18. Kozlovsky, P., U. Zaretsky, A. J. Jaffa, and D. Elad. General tube law for collapsible thin and thick-wall tubes. J. Biomech. 47:2378–2384, 2014.

    Article  PubMed  Google Scholar 

  19. Lattimer, C., E. Kalodiki, M. Kafeza, M. Azzam, and G. Geroulakos. Quantifying the degree graduated elastic compression stockings enhance venous emptying. Eur. J. Vasc. Endovasc. Surg. doi:10.1016/j.ejvs.2013.10.020.

  20. Lord, R. S. A., and D. Hamilton. Graduated compression stockings (20–30 mmHG) do not compress leg veins in the standing position. ANZ J. Surg. 74:581–585, 2004.

    Article  PubMed  Google Scholar 

  21. Martinez, R., C. Fierro, P. Shireman, and H.-C. Han. Mechanical buckling of veins under internal pressure. Ann. Biomed. Eng. 38:1345–1353, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Martinez, R., and H.-C. Han. The effect of collagenase on the critical buckling pressure of arteries. Mol. Cell. Biomech. 9:55–75, 2012.

    PubMed Central  PubMed  Google Scholar 

  23. Mayberry, J. C., G. L. Moneta, R. D. De Frang, and J. M. Porter. The influence of elastic compression stockings on deep venous hemodynamics. J. Vasc. Surg. 13:91–100, 1991.

    Article  CAS  PubMed  Google Scholar 

  24. Mosti, G., and H. Partsch. Improvement of venous pumping function by double progressive compression stockings: higher pressure over the calf is more important than a graduated pressure profile. Eur. J. Vasc. Endovasc. Surg. 47:545–549, 2014.

    Article  CAS  PubMed  Google Scholar 

  25. Narracott, A. J., G. W. John, R. J. Morris, J. P. Woodcock, D. R. Hose, and P. V. Lawford. A validated model of calf compression and deep vessel collapse during external cuff inflation. IEEE Trans. Biomed. Eng. 56:273–280, 2009.

    Article  CAS  PubMed  Google Scholar 

  26. Nazari, M. A., P. Perrier, and Y. Payan. The distributed lambda (λ) model (DLM): a 3-D, finite-element muscle model based on Feldman’s λ model; assessment of orofacial gestures. J. Speech Lang. Hearing Res. 56:S1909–S1923, 2013.

    Article  Google Scholar 

  27. Nicolaides, A. N., V. V. Kakkar, E. S. Field, and J. T. G. Renney. The origin of deep vein thrombosis: a venographic study. Br. J. Radiol. 44:653–663, 1971.

    Article  CAS  PubMed  Google Scholar 

  28. Orsted, H. L., L. Radke, and R. Gorst. The impact of musculoskeletal changes on the dynamics of the calf muscle pump. Ostomy Wound Manage 47:18–24, 2001.

    CAS  PubMed  Google Scholar 

  29. Partsch, H., G. Mosti, and F. Mosti. Narrowing of leg veins under compression demonstrated by magnetic resonance imaging (MRI). Int. Angiol. J. Int. Union Angiol. 29:408–410, 2010.

    CAS  Google Scholar 

  30. Partsch, B., and H. Partsch. Calf compression pressure required to achieve venous closure from supine to standing positions. J. Vasc. Surg. 42:734–738, 2005.

    Article  PubMed  Google Scholar 

  31. Rohan, C. P.-Y., P. Badel, B. Lun, D. Rastel, and S. Avril. Biomechanical response of varicose veins to elastic compression: a numerical study. J. Biomech. 46:599–603, 2013.

    Article  PubMed  Google Scholar 

  32. Stecco, C., V. Macchi, A. Porzionato, F. Duparc, and R. De Caro. The fascia: the forgotten structure. Italian J. Anat. Embryol. 116:127–138, 2011.

    Google Scholar 

  33. Van der Velden, S., and H. Neumann. The post-thrombotic syndrome and compression therapy. Phlebology 29:83–89, 2014.

    Article  PubMed  Google Scholar 

  34. Wang, Y., S. Downie, N. Wood, D. Firmin, and X. Y. Xu. Finite element analysis of the deformation of deep veins in the lower limb under external compression. Med. Eng. Phys. 35:515–523, 2013.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Avril.

Additional information

Associate Editor Amit Gefen oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohan, PY., Badel, P., Lun, B. et al. Prediction of the Biomechanical Effects of Compression Therapy on Deep Veins Using Finite Element Modelling. Ann Biomed Eng 43, 314–324 (2015). https://doi.org/10.1007/s10439-014-1121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1121-6

Keywords

Navigation