Skip to main content
Log in

The Effect of Valve-in-Valve Implantation Height on Sinus Flow

  • The Pursuit of Engineering the Ideal Heart Valve Replacement or Repair
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Valve-in-valve transcatheter aortic valve replacement (VIV-TAVR) has proven to be a successful treatment for high risk patients with failing aortic surgical bioprostheses. However, thrombus formation on the leaflets of the valve has emerged as a major issue in such procedures, posing a risk of restenosis, thromboembolism, and reduced durability. In this work we attempted to understand the effect of deployment position of the transcatheter heart valve (THV) on the spatio-temporal flow field within the sinus in VIV-TAVR. Experiments were performed in an in vitro pulsatile left heart simulator using high-speed Particle Image Velocimetry (PIV) to measure the flow field in the sinus region. The time-resolved velocity data was used to understand the qualitative and quantitative flow patterns. In addition, a particle tracking technique was used to evaluate relative thrombosis risk via sinus washout. The velocity data demonstrate that implantation position directly affects sinus flow patterns, leading to increased flow stagnation with increasing deployment height. The particle tracking simulations showed that implantation position directly affected washout time, with the highest implantation resulting in the least washout. These results clearly demonstrate the flow pattern and flow stagnation in the sinus is sensitive to THV position. It is, therefore, important for the interventional cardiologist and cardiac surgeon to consider how deployment position could impact flow stagnation during VIV-TAVR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

VIV:

Valve-in-valve

TAVR:

Transcatheter aortic valve replacement

THV:

Transcatheter heart valve

References

  1. Azadani, A. N., N. Jaussaud, P. B. Matthews, L. Ge, T. A. M. Chuter, and E. E. Tseng. Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses. Interact. CardioVasc. Thorac. Surg. 11:70–77, 2010.

    Article  PubMed  Google Scholar 

  2. Brown, J. M., S. M. O’Brien, C. Wu, J. A. H. Sikora, B. P. Griffith, and J. S. Gammie. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 137:82–90, 2009.

    Article  PubMed  Google Scholar 

  3. Cannegieter, S. C., F. R. Rosendaal, and E. Briet. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89:635–641, 1994.

    Article  CAS  PubMed  Google Scholar 

  4. Carabello, B. A., and W. J. Paulus. Aortic stenosis. Lancet 373:956–966, 2009.

    Article  PubMed  Google Scholar 

  5. Clark, M. A., F. G. Duhay, A. K. Thompson, M. J. Keyes, L. G. Svensson, R. O. Bonow, B. T. Stockwell, and D. Cohen. Clinical and economic outcomes after surgical aortic valve replacement in Medicare patients. Risk Manag. Healthc. Policy 5:117, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  6. De Marchena, E., J. Mesa, S. Pomenti, C. Marin y Kall, X. Marincic, K. Yahagi, E. Ladich, R. Kutz, Y. Aga, M. Ragosta, A. Chawla, M. E. Ring, and R. Virmani. Thrombus formation following transcatheter aortic valve replacement. J. Am. Coll. Cardiol. Interv. 8:728–739, 2015.

    Article  Google Scholar 

  7. Dvir, D., M. Barbanti, J. Tan, and J. G. Webb. Transcatheter aortic valve-in-valve implantation for patients with degenerative surgical bioprosthetic valves. Curr. Probl. Cardiol. 39:7–27, 2014.

    Article  PubMed  Google Scholar 

  8. Dvir, D., J. G. Webb, N. Piazza, P. Blanke, M. Barbanti, S. Bleiziffer, D. A. Wood, D. Mylotte, A. B. Wilson, J. Tan, D. Stub, C. Tamburino, R. Lange, and J. Leipsic. Multicenter evaluation of transcatheter aortic valve replacement using either SAPIEN XT or CoreValve: Degree of device oversizing by computed-tomography and clinical outcomes. Catheter Cardiovasc. Interv. 86(3):508–515, 2015.

    Article  PubMed  Google Scholar 

  9. Dvir, D., et al. Transcatheter aortic valve implantation in failed bioprosthetic surgical valves. JAMA 312:162, 2014.

    Article  CAS  PubMed  Google Scholar 

  10. Hansson, N., T. Leetmaa, J. A. Leipsic, K. Jensen, H. R. Andersen, J. M. Jensen, J. Webb, P. Blanke, M. Tang, and B. Nørgaard. TCT-665 early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multislice computed tomography. J. Am. Coll. Cardiol. 64:B193–B194, 2014.

    Article  Google Scholar 

  11. Harjai, K. J., J.-M. Paradis, and S. Kodali. Transcatheter aortic valve replacement: game-changing innovation for patients with aortic stenosis. Annu. Rev. Med. 65:367–383, 2014.

    Article  CAS  PubMed  Google Scholar 

  12. Knight, J., V. Kurtcuoglu, K. Muffly, W. Marshall, P. Stolzmann, L. Desbiolles, B. Seifert, D. Poulikakos, and H. Alkadhi. Ex vivo and in vivo coronary ostial locations in humans. Surg. Radiol. Anat. 31:597–604, 2009.

    Article  PubMed  Google Scholar 

  13. Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.

    Article  Google Scholar 

  14. Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. de Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C. A. Kliger, H. Guo, A. D. Pichard, N. J. Weissman, S. Kapadia, E. Manasse, D. L. Bhatt, M. B. Leon, and L. Søndergaard. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 2015. doi:10.1056/NEJMoa1509233.

    PubMed  Google Scholar 

  15. Midha, P. A., V. Raghav, J. F. Condado, S. Arjunon, D. E. Uceda, S. Lerakis, V. H. Thourani, V. Babaliaros, and A. P. Yoganathan. How can we help a patient with a small failing bioprosthesis? JACC Cardiovasc. Interv. 8:2026–2033, 2015.

    Article  PubMed  Google Scholar 

  16. Moore, B., and L. P. Dasi. Spatiotemporal complexity of the aortic sinus vortex. Exp. Fluids 55:1770, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Nkomo, V. T., J. M. Gardin, T. N. Skelton, J. S. Gottdiener, C. G. Scott, and M. Enriquez-Sarano. Burden of valvular heart diseases: a population-based study. Lancet 368:1005–1011, 2006.

    Article  PubMed  Google Scholar 

  18. Petschek, H., D. Adamis, and A. R. Kantrowitz. Stagnation flow thrombus formation. Trans. Am. Soc. Artif. Intern. Organs 14:256–260, 1968.

    CAS  PubMed  Google Scholar 

  19. Prasad, A. K. Particle Image Velocimetry. Berlin: Springer, pp. 51–60, 2007.

    Google Scholar 

  20. Raffel, M., C. E. Willert, S. Wereley, and J. Kompenhans. Particle Image Velocimetry. Berlin: Springer, 2007. doi:10.1007/978-3-540-72308-0

  21. Reul, H., A. Vahlbruch, M. Giersiepen, T. Schmitz-Rode, V. Hirtz, and S. Effert. The geometry of the aortic root in health, at valve disease and after valve replacement. J. Biomech. 23:181–191, 1990.

    Article  CAS  PubMed  Google Scholar 

  22. Saikrishnan, N., S. Gupta, and A. P. Yoganathan. Hemodynamics of the boston scientific lotus™ valve: an in vitro study. Cardiovasc. Eng. Technol. 4:427–439, 2013.

    Article  Google Scholar 

  23. Saikrishnan, N., and A. Yoganathan. Transcatheter valve implantation can alter the fluid flow fields in the aortic sinuses and ascending aorta: an in vitro study. J. Am. Coll. Cardiol. 61:E1957, 2013.

    Article  Google Scholar 

  24. Wootton, D. M., and D. N. Ku. Fluid mechanics of vascular systems, diseases, and thrombosis. Annu. Rev. Biomed. Eng. 1:299–329, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Yap, C. H., N. Saikrishnan, G. Tamilselvan, and A. P. Yoganathan. Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech. Model Mechanobiol. 11:171–182, 2012.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the members of the Cardiovascular Fluid Mechanics Laboratory for their assistance and feedback. The authors are grateful to our collaborators at Emory University Hospital—Drs. Vinod Thourani, Vasilis Babaliaros, Stamatios Lerakis, and Jose Condado for providing the valve models and assistance with placing the work in the context of clinical relevance. The glycerin used in this study was generously provided by Procter & Gamble. This study at the CFM lab at the Georgia Institute of Technology was made possible through discretionary funds available to the Principal Investigator including the Wallace H Coulter Endowed Chair.

Conflicts of Interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Additional information

Associate Editor Lakshmi Prasad Dasi oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 13387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midha, P.A., Raghav, V., Okafor, I. et al. The Effect of Valve-in-Valve Implantation Height on Sinus Flow. Ann Biomed Eng 45, 405–412 (2017). https://doi.org/10.1007/s10439-016-1642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1642-2

Keywords

Navigation