Skip to main content
Log in

Fluid Dynamics in Rotary Piston Blood Pumps

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Mechanical circulatory support can maintain a sufficient blood circulation if the native heart is failing. The first implantable devices were displacement pumps with membranes. They were able to provide a sufficient blood flow, yet, were limited because of size and low durability. Rotary pumps have resolved these technical drawbacks, enabled a growing number of mechanical circulatory support therapy and a safer application. However, clinical complications like gastrointestinal bleeding, aortic insufficiency, thromboembolic complications, and impaired renal function are observed with their application. This is traced back to their working principle with attenuated or non-pulsatile flow and high shear stress. Rotary piston pumps potentially merge the benefits of available pump types and seem to avoid their complications. However, a profound assessment and their development requires the knowledge of the flow characteristics. This study aimed at their investigation. A functional model was manufactured and investigated with particle image velocimetry. Furthermore, a fluid–structure interaction computational simulation was established to extend the laboratory capabilities. The numerical results precisely converged with the laboratory measurements. Thus, the in silico model enabled the investigation of relevant areas like gap flows that were hardly feasible with laboratory means. Moreover, an economic method for the investigation of design variations was established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abgrall, R., H. Beaugendre, and C. Dobrzynski. An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques. J. Comput. Phys. 257:83–101, 2014. doi:10.1016/j.jcp.2013.08.052.

    Article  Google Scholar 

  2. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007. doi:10.1111/j.1525-1594.2007.00446.x.

    Article  PubMed  Google Scholar 

  3. ANSYS Help 16.2.0. Canonsburg, USA.

  4. Barth, T. J., and D.C. Jespersen. The design and application of upwind schemes on unstructured meshes. NASA Ames Research Center, Moffett Field, CA, United States 89-0366, 1989.

  5. Clinical Study: Early Versus Emergency Left Ventricular Assist Device Implantation in Patients Awaiting Cardiac Transplantation. https://clinicaltrials.gov/ct2/show/NCT02387112?term=NCT+02387112&rank=1.

  6. Ferziger, J. H., and M. Perić. Computational Methods for Fluid Dynamics (3rd ed.). Berlin: Springer, 2002; (xiv, 423).

    Book  Google Scholar 

  7. Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134(8):081002, 2012. doi:10.1115/1.4007092.

    Article  PubMed  Google Scholar 

  8. Global Status Report on Noncommunicable Diseases 2014. WHO Library Cataloguing-in-Publication Data. Geneva: World Health Organization, 2014, 301 pp. http://apps.who.int/iris/bitstream/10665/148114/1/9789241564854_eng.pdf

  9. Grinstein, F. F., L. G. Margolin, and W. Rider (eds.). Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics. Cambridge: Cambridge University Press, 2007; (8 pp).

    Google Scholar 

  10. Gronskis, A., and G. Artana. A simple and efficient direct forcing immersed boundary method combined with a high order compact scheme for simulating flows with moving rigid boundaries. Comput. Fluids 124:86–104, 2016. doi:10.1016/j.compfluid.2015.10.016.

    Article  Google Scholar 

  11. Joyce, D. L., L. D. Joyce, and M. Loebe. Mechanical Circulatory Support: Principles and Applications (1st ed.). New York: McGraw-Hill Professional, 2012; (xv, 253).

    Google Scholar 

  12. Kirklin, J. K., D. C. Naftel, F. D. Pagani, R. L. Kormos, L. W. Stevenson, E. D. Blume, S. L. Myers, M. A. Miller, J. T. Baldwin, and J. B. Young. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transplant. 34(12):1495–1504, 2015. doi:10.1016/j.healun.2015.10.003.

    Article  PubMed  Google Scholar 

  13. Margreiter, R., W. Schwab, G. Klima, J. Koiler, M. Baum, H. Dietrich, J. Hager, and A. Konigsrainer. Rotacor: a new rotary blood pump. ASAIO Trans. 36(3):M281–M284, 1990.

    CAS  PubMed  Google Scholar 

  14. Mesana, T., N. Mitsui, J. Trinkl, J. -L. Y. Demunck, P. J. Havlik, and J. R. Montiès. First significant animal survival with a Wankel-type left ventricular assist device, 37th ed.: ASAIO Trans (0889-7190 (Linking)):M166–M168, 1991:37(3).

  15. Moazami, N., W. P. Dembitsky, R. Adamson, R. J. Steffen, E. G. Soltesz, R. C. Starling, and K. Fukamachi. Does pulsatility matter in the era of continuous-flow blood pumps? J. Heart Lung Transplant. 34(8):999–1004, 2015. doi:10.1016/j.healun.2014.09.012.

    Article  PubMed  Google Scholar 

  16. Monties, J. R. P., and P. Havlik. KUENSTLICHES HERZ. DE Patent DE2819851 (A1), 9 November 1978.

  17. Shah, N., V. Agarwal, N. Patel, A. Deshmukh, A. Chothani, J. Garg, A. Badheka, M. Martinez, N. Islam, and R. Freudenberger. National trends in utilization, mortality, complications, and cost of care after left ventricular assist device implantation from 2005 to 2011. Ann. Thorac. Surg. 101(4):1477–1484, 2016. doi:10.1016/j.athoracsur.2015.09.013.

    Article  PubMed  Google Scholar 

  18. Transonic Systems Inc. Research Flowmeters Manual TN#94 Frequency Rev.7-03.

  19. Wappenschmidt, J., R. Autschbach, U. Steinseifer, T. Schmitz-Rode, R. Margreiter, G. Klima, and A. Goetzenich. Rotary piston blood pumps: past developments and future potential of a unique pump type. Expert Rev. Med. Devices 2016. doi:10.1080/17434440.2016.1207522.

    PubMed  Google Scholar 

  20. Wappenschmidt, J. F. W. G. S., A. F. W. Goetzenich, R. Autschbach, and U. Steinseifer. Rotationskolbenpumpe. DE Patent DE102014010745 (A1), 11 February 2016.

Download references

Acknowledgments

This research project is supported by the START-Program of the Faculty of Medicine, RWTH Aachen University.

Conflict of interest

Some of the authors have a patent pending for seal-less rotary piston drives (DE 10 2014 010 745).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Wappenschmidt.

Additional information

Associate Editor Kerry Hourigan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wappenschmidt, J., Sonntag, S.J., Buesen, M. et al. Fluid Dynamics in Rotary Piston Blood Pumps. Ann Biomed Eng 45, 554–566 (2017). https://doi.org/10.1007/s10439-016-1700-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1700-9

Keywords

Navigation