Skip to main content
Log in

Stereotactic Systems for MRI-Guided Neurosurgeries: A State-of-the-Art Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Recent technological developments in magnetic resonance imaging (MRI) and stereotactic techniques have significantly improved surgical outcomes. Despite the advantages offered by the conventional MRI-guided stereotactic neurosurgery, the robotic-assisted stereotactic approach has potential to further improve the safety and accuracy of neurosurgeries. This review aims to provide an update on the potential and continued growth of the MRI-guided stereotactic neurosurgical techniques by describing the state of the art in MR conditional stereotactic devices including manual and robotic-assisted. The paper also presents a detailed overview of MRI-guided stereotactic devices, MR conditional actuators and encoders used in MR conditional robotic-assisted stereotactic devices. The review concludes with several research challenges and future perspectives, including actuator and sensor technique, MR image guidance, and robot design issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Adler, Jr, J. R., S. D. Chang, M. J. Murphy, J. Doty, P. Geis, and S. L. Hancock. The Cyberknife: a frameless robotic system for radiosurgery. Stereotact. Funct. Neurosurg. 69(1–4):124–128, 1997.

    Article  PubMed  Google Scholar 

  2. ASTM-F2503. Standard practice for marking medical devices and other items for safety in the magnetic resonance environment. www.astm.org

  3. Bajo, A., and N. Simaan. Kinematics-based detection and localization of contacts along multisegment continuum robots. IEEE Trans. Robot. 28(2):291–302, 2012.

    Article  Google Scholar 

  4. Bosboom, D. G. H., J. J. Fütterer, and J. Bosboom. Motor system, motor, and robot arm device comprising the same. Google Patents, 2016.

  5. Bown, S. Phototherapy of tumors. World J. Surg. 7(6):700–709, 1983.

    Article  CAS  PubMed  Google Scholar 

  6. Brandmeir, N. J., J. McInerney, and B. E. Zacharia. The use of custom 3D printed stereotactic frames for laser interstitial thermal ablation. Neurosurg. Focus 41(4):E3, 2016.

    Article  PubMed  Google Scholar 

  7. Burgner, J., P. J. Swaney, R. A. Lathrop, K. D. Weaver, and R. J. Webster. Debulking from within: a robotic steerable cannula for intracerebral hemorrhage evacuation. IEEE Trans. Biomed. Eng. 60(9):2567–2575, 2013.

    Article  PubMed  Google Scholar 

  8. Chan, F., et al. Image-guided robotic neurosurgery—an in vitro and in vivo point accuracy evaluation experimental study. Surg. Neurol. 71(6):640–647, 2009.

    Article  PubMed  Google Scholar 

  9. Chen, Y., I. S. Godage, S. Sengupta, C. L. Liu, K. D. Weaver, and E. J. Barth. MR-compatible steerable needle robot for intracerebral hemorrhage removal. Int. J. Comput. Assist. Radiol. Surg. 2018. https://doi.org/10.1007/s11548-018-1854-z.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen, Y., I. S. Godage, Z. T. H. Tse, R. J. Webster, and E. J. Barth. Characterization and control of a pneumatic motor for MR-conditional robotic applications. IEEE/ASME Trans. Mechatron. 22(6):2780–2789, 2017.

    Article  Google Scholar 

  11. Chen, Y., K.-W. Kwok, and Z. T. H. Tse. An MR-conditional high-torque pneumatic stepper motor for MRI-guided and robot-assisted intervention. Ann. Biomed. Eng. 42(9):1823–1833, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chen, Y., C. D. Mershon, and Z. T. H. Tse. A 10-mm MR-conditional unidirectional pneumatic stepper motor. IEEE/ASME Trans. Mechatron. 20(2):782–788, 2015.

    Article  Google Scholar 

  13. Chen, Y., T. T. Zion, W. Wang, R. Y. Kwong, W. G. Stevenson, and E. J. Schmidt. Intra-cardiac MR imaging & MR-tracking catheter for improved MR-guided EP. J. Cardiovasc. Magn. Reson. 17(1):P237, 2015.

    Article  PubMed Central  Google Scholar 

  14. Chen, Y., et al. Design and fabrication of MR-tracked metallic stylet for gynecologic brachytherapy. IEEE/ASME Trans. Mechatron. 21(2):956, 2016.

    Article  Google Scholar 

  15. Chen, Y., et al. An MRI-compatible robot for intracerebral hemorrhage removal. In: 2017 Design of Medical Devices Conference, pp. V001T08A019-V001T08A019, 2017. American Society of Mechanical Engineers..

  16. Chen, Y., et al. Treating epilepsy via thermal ablation: initial experiments with an MRI-guided concentric tube robot. In: 2017 Design of Medical Devices Conference, pp. V001T02A002-V001T02A002, 2017. American Society of Mechanical Engineers.

  17. Chen, Y., et al. Robotic system for MRI-guided focal laser ablation in the prostate. IEEE/ASME Trans. Mechatron. 22(1):107–114, 2017.

    Article  Google Scholar 

  18. Chen, Y., et al. MRI guided robotically assisted focal laser ablation of the prostate using canine cadavers. IEEE Trans. Biomed. Eng. 2017.

  19. Chinzei, K., and K. Miller. Towards MRI guided surgical manipulator. Med. Sci. Monit. 7(1):153–163, 2001.

    CAS  PubMed  Google Scholar 

  20. Chung, Y. C., J. L. Duerk, A. Shankaranarayanan, M. Hampke, E. M. Merkle, and J. S. Lewin. Temperature measurement using echo-shifted FLASH at low field for interventional MRI. J. Magn. Reson. Imaging 9(1):138–145, 1999.

    Article  CAS  PubMed  Google Scholar 

  21. Clarke, R. The structure and functions of the cerebellum examined by a new method. Brain 45, 1908.

  22. Cleary, K., et al. Robotically assisted long bone biopsy under MRI imaging: workflow and preclinical study. Acad. Radiol. 25(1):74–81, 2018.

    Article  PubMed  Google Scholar 

  23. Comber, D. B., J. E. Slightam, V. R. Gervasi, J. S. Neimat, and E. J. Barth. Design, additive manufacture, and control of a pneumatic MR-compatible needle driver. IEEE Trans. Robot. 32(1):138–149, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Eljamel, M. Robotic application in epilepsy surgery. Int. J.Med. Robot. Comput. Assist. Surg. 2(3):233–237, 2006.

    Article  CAS  Google Scholar 

  25. Eljamel, M. S. Robotic applications in neurosurgery. Medical Robotics 1(1):11–22, 2008.

    Google Scholar 

  26. Fan, X., D. W. Roberts, J. D. Olson, C. Li, and K. D. Paulsen. Image updating for brain deformation compensation: cross-validation with intraoperative ultrasound. In: Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling. International Society for Optics and Photonics, vol. 10576, p. 105760S.

  27. Fankhauser, H., et al. Robot for CT-guided stereotactic neurosurgery. Stereotact. Funct. Neurosurg. 63(1–4):93–98, 1994.

    Article  CAS  PubMed  Google Scholar 

  28. Fischer, G. S., G. Cole, and H. Su. Approaches to creating and controlling motion in MRI. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 6687–6690, 2011. IEEE.

  29. Fischer, G. S., A. Krieger, I. Iordachita, C. Csoma, L. L. Whitcomb, and G. Fichtinger. MRI compatibility of robot actuation techniques–a comparative study. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 509–517, 2008. Springer.

  30. Franck, J. I., et al. Instrument guidance for stereotactic surgery. Google Patents 2001.

  31. Gassert, R., R. Moser, E. Burdet, and H. Bleuler. MRI/fMRI-compatible robotic system with force feedback for interaction with human motion. IEEE/ASME Trans. Mechatron. 11(2):216–224, 2006.

    Article  Google Scholar 

  32. Gassert, R., et al. A 2-DOF fMRI compatible haptic interface to investigate the neural control of arm movements. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006 (ICRA 2006), pp. 3825–3831, 2006. IEEE.

  33. Ghoshal, G., et al. Ex-vivo and simulation comparison of multi-angular ablation patterns using catheter-based ultrasound transducers. In: Energy-Based Treatment of Tissue and Assessment VII, vol. 8584, p. 85840Y, 2013. International Society for Optics and Photonics.

  34. Groenhuis, V., and S. Stramigioli. Laser-cutting pneumatics. IEEE/ASME Trans. Mechatron. 21(3):1604–1611, 2016.

    Article  Google Scholar 

  35. Guo, Z., T. Lun, Y. Chen, H. Su, D. Chan, and K. Kwok. Novel design of an MR-safe pneumatic stepper motor for MRI-guided robotic interventions. In: Proceedings of the Hamlyn Symposium on Medical Robotics, 2016: Imperial College London and the Royal Geographical Society London. http://hamlyn.doc.ic.ac.uk/hsmr/programme/symposium-proceedings.

  36. Hao, S., A. Camilo, G. A. Cole, H. Nobuhiko, C. M. Tempany, and G. S. Fischer. High-field MRI-compatible needle placement robot for prostate interventions. Stud. Health Technol. Inform. 163:623, 2011.

    Google Scholar 

  37. Hata, N., J. Tokuda, S. Hurwitz, and S. Morikawa. MRI-compatible manipulator with remote-center-of-motion control. J. Magn. Reson. Imaging 27(5):1130–1138, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Henderson, J. M., K. L. Holloway, S. E. Gaede, and J. M. Rosenow. The application accuracy of a skull-mounted trajectory guide system for image-guided functional neurosurgery. Comput. Aided Surg. 9(4):155–160, 2004.

    Article  PubMed  Google Scholar 

  39. Ho, M., A. McMillan, J. M. Simard, R. Gullapalli, and J. P. Desai. Towards a meso-scale SMA-actuated MRI-compatible neurosurgical robot. IEEE Trans. Robot. 2011(99):1, 2011.

    PubMed  PubMed Central  Google Scholar 

  40. Hongo, K., et al. NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery—preliminary results. Neurosurgery 51(4):985–988, 2002.

    PubMed  Google Scholar 

  41. Housepian, E. M., and J. L. Pool. The accuracy of human stereoencephalotomy as judged by histological confirmation of roentgenographic localization. J. Nerv. Mental Dis. 130(6):520–525, 1960.

    Article  CAS  Google Scholar 

  42. Hushek, S., et al. Initial clinical experience with a passive electromagnetic 3D locator system. In: 5th Interventional MRI Symposium, 2004, no. 605.

  43. Jerbic, B., G. Nikolic, D. Chudy, M. Svaco, and B. Sekoranja. Robotic application in neurosurgery using intelligent visual and haptic interaction. Int. J. Simul. Model. 14(1):71–84, 2015.

    Article  Google Scholar 

  44. Jun, C., et al. MR safe robot assisted needle access of the brain: preclinical study. J. Med. Robot. Res. 3(01):1850003, 2018.

    Article  Google Scholar 

  45. Khan, F. R., and J. M. Henderson. Deep brain stimulation surgical techniques. In: Handbook of Clinical Neurology, Vol. 116, edited by K. Levin, and P. Chauvel. Amsterdam: Elsevier, 2013, pp. 27–37.

    Google Scholar 

  46. Kim, D., E. Kobayashi, T. Dohi, and I. Sakuma. A new, compact MR-compatible surgical manipulator for minimally invasive liver surgery. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 99–106, 2002. Springer.

  47. Krieger, A., et al. Development and preliminary evaluation of an actuated MRI-compatible robotic device for MRI-guided prostate intervention. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1066–1073, 2010. IEEE.

  48. Krieger, A., et al. Development and evaluation of an actuated MRI-compatible robotic system for MRI-guided prostate intervention. IEEE/ASME Trans. Mechatron. 18(1):273–284, 2013.

    Article  Google Scholar 

  49. Kwoh, Y. S., J. Hou, E. A. Jonckheere, and S. Hayati. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Trans. Biomed. Eng. 35(2):153–160, 1988.

    Article  CAS  PubMed  Google Scholar 

  50. Kwok, K.-W., et al. Interfacing fast multi-phase cardiac image registration with MRI-based catheter tracking for MRI-guided electrophysiological ablative procedures. Am Heart Assoc 2014

  51. Larson, P. S., P. A. Starr, G. Bates, L. Tansey, R. M. Richardson, and A. J. Martin. An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Oper. Neurosurg. 70(suppl_1):ons95–ons103, 2011.

    Google Scholar 

  52. Le Roux, P. D., H. Das, S. Esquenazi, and P. J. Kelly. Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery 48(3):584–589, 2001.

    Article  PubMed  Google Scholar 

  53. Lee, K.-H., Z. Guo, G. C. Chow, Y. Chen, W. Luk, and K.-W. Kwok. GPU-based proximity query processing on unstructured triangular mesh model. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 4405–4411, 2015. IEEE

  54. Leksell, L. The stereotactic method and radiosurgery of the brain. Acta Chir. Scand. 102:316–319, 1951.

    CAS  PubMed  Google Scholar 

  55. Lepski, G., et al. MRI-based radiation-free method for navigated percutaneous radiofrequency trigeminal rhizotomy. J. Neurol. Surg. Part A 76(02):160–167, 2015.

    Article  Google Scholar 

  56. Li, G., et al. Robotic system for MRI-guided stereotactic neurosurgery. IEEE Trans. Biomed. Eng. 62(4):1077, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lieberman, I. H., et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement: part I—technical development and a test case result. Neurosurgery 59(3):641–650, 2006.

    Article  PubMed  Google Scholar 

  58. Louw, D. F., T. Fielding, P. B. McBeth, D. Gregoris, P. Newhook, and G. R. Sutherland. Surgical robotics: a review and neurosurgical prototype development. Neurosurgery 54(3):525–537, 2004.

    Article  PubMed  Google Scholar 

  59. Machado, A., A. R. Rezai, B. H. Kopell, R. E. Gross, A. D. Sharan, and A. L. Benabid. Deep brain stimulation for Parkinson’s disease: surgical technique and perioperative management. Mov. Disord. 21(S14):S247–S258, 2006.

    Article  PubMed  Google Scholar 

  60. Martin, A. J., et al. Placement of deep brain stimulator electrodes using real-time high-field interventional magnetic resonance imaging. Magn. Reson. Med. 54(5):1107–1114, 2005.

    Article  PubMed  Google Scholar 

  61. Masamune, K., et al. Development of an MRI-compatible needle insertion manipulator for stereotactic neurosurgery. J. Image Guid Surg 1(4):242–248, 1995.

    Article  CAS  PubMed  Google Scholar 

  62. McRobbie, D. W., E. A. Moore, and M. J. Graves. MRI from Picture to Proton. Cambridge: Cambridge University Press, 2017.

    Book  Google Scholar 

  63. Medvid, R., et al. Current applications of MRI-guided laser interstitial thermal therapy in the treatment of brain neoplasms and epilepsy: a radiologic and neurosurgical overview. Am. J. Neuroradiol. 2015

  64. Miga, M. I., et al. Modeling of retraction and resection for intraoperative updating of images. Neurosurgery 49(1):75–85, 2001.

    CAS  PubMed  Google Scholar 

  65. Mohammadi, A. M., and J. L. Schroeder. Laser interstitial thermal therapy in treatment of brain tumors–the NeuroBlate System. Expert Rev. Med. Devices 11(2):109–119, 2014.

    Article  CAS  PubMed  Google Scholar 

  66. Motkoski, J. W., and G. R. Sutherland. Progress in neurosurgical robotics. In: Intraoperative Imaging and Image-Guided Therapy, edited by F. A. Jolesz. New York: Springer, 2014, pp. 601–612.

    Chapter  Google Scholar 

  67. Nexframe Deep Brain Stimulation for Movement Disorders. http://professional.medtronic.com/pt/neuro/dbs-md/prod/index.htm#tabs-3

  68. Norred, S. E., and J. A. Johnson. Magnetic resonance-guided laser induced thermal therapy for glioblastoma multiforme: a review. BioMed Res. Int., vol. 2014, 2014

  69. Nycz, C. J., et al. Mechanical validation of an MRI compatible stereotactic neurosurgery robot in preparation for pre-clinical trials. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1677–1684, IEEE 2017

  70. Ostrem, J. L., et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J. Neurosurg. 124(4):908–916, 2016.

    Article  PubMed  Google Scholar 

  71. Pandya, S., J. W. Motkoski, C. Serrano-Almeida, A. D. Greer, I. Latour, and G. R. Sutherland. Advancing neurosurgery with image-guided robotics. J. Neurosurg. 111(6):1141–1149, 2009.

    Article  PubMed  Google Scholar 

  72. Perlmutter, J. S., and J. W. Mink. Deep brain stimulation. Annu. Rev. Neurosci. 29:229–257, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Pitt, E. B., D. B. Comber, Y. Chen, J. S. Neimat, R. J. Webster, and E. J. Barth. Follow-the-leader deployment of steerable needles using a magnetic resonance-compatible robot with stepper actuators. J. Med. Devices 10(2):020945, 2016.

    Article  Google Scholar 

  74. Prakash, P., V. A. Salgaonkar, E. C. Burdette, and C. J. Diederich. Hepatic ablation with multiple interstitial ultrasound applicators: initial ex vivo and computational studies. In: Energy-Based Treatment of Tissue and Assessment VI, vol. 7901, p. 79010R, 2011, International Society for Optics and Photonics.

  75. Qin, H., A. Song, Z. Gao, Y. Liu, and G. Jiang. A multi-finger interface with MR actuators for haptic applications. IEEE Trans. Haptics 11(1):5–14, 2018.

    Article  PubMed  Google Scholar 

  76. Sajima, H., H. Kamiuchi, K. Kuwana, T. Dohi, and K. Masamune. MR-safe pneumatic rotation stepping actuator. J. Robot. Mechatron. 24(5):820–827, 2012.

    Article  Google Scholar 

  77. Scott, S. J., et al. Interstitial ultrasound ablation of tumors within or adjacent to bone: contributions of preferential heating at the bone surface. In: Energy-Based Treatment of Tissue and Assessment VII, vol. 8584, p. 85840Z, 2013. International Society for Optics and Photonics

  78. Secoli, R., M. Robinson, M. Brugnoli, and F. Rodriguez y Baena. A low-cost, high-field-strength magnetic resonance imaging–compatible actuator. Proc. Inst. Mech Eng. Part H 229(3):215–224, 2015.

    Article  Google Scholar 

  79. Sengupta, S., S. Tadanki, J. C. Gore, and E. B. Welch. Prospective real-time head motion correction using inductively coupled wireless NMR probes. Magn. Reson. Med. 72(4):971–985, 2014.

    Article  PubMed  Google Scholar 

  80. Shen, W., J. Gu, and E. Milios. Robotic neurosurgery and clinical applications. In: International Conference on Proceedings of Intelligent Mechatronics and Automation, pp. 114-119, 2004. IEEE

  81. Sidiropoulos, C., et al. Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. J. Neurol. 263(6):1226–1231, 2016.

    Article  PubMed  Google Scholar 

  82. Skopec, M. A primer on medical device interactions with magnetic resonance imaging systems, Feb. 4, 1997, CDRH Magnetic Resonance Working Group, US Department of Heatlh and Human Services. Food Drug Admin Center Device Radiol Health Updated May 23:17, 1997.

  83. Smith, J. A., J. Jivraj, R. Wong, and V. Yang. 30 Years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann. Biomed. Eng. 44(4):836–846, 2016.

    Article  PubMed  Google Scholar 

  84. Spiegel, E. A., H. T. Wycis, M. Marks, and A. Lee. Stereotaxic apparatus for operations on the human brain. Science 106(2754):349–350, 1947.

    Article  CAS  PubMed  Google Scholar 

  85. Starr, P. A., L. C. Markun, P. S. Larson, M. M. Volz, A. J. Martin, and J. L. Ostrem. Interventional MRI–guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J. Neurosurg. 14(4):400–408, 2014.

    Google Scholar 

  86. Starr, P. A., A. J. Martin, J. L. Ostrem, P. Talke, N. Levesque, and P. S. Larson. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J. Neurosurg. 112(3):479–490, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Stoianovici, D., A. Patriciu, D. Petrisor, D. Mazilu, and L. Kavoussi. A new type of motor: pneumatic step motor. IEEE/ASME Trans. Mechatron. 12(1):98–106, 2007.

    Article  Google Scholar 

  88. Stoianovici, D., et al. MRI-safe robot for endorectal prostate biopsy. IEEE/ASME Trans. Mechatron. 19(4):1289–1299, 2014.

    Article  Google Scholar 

  89. Stoianovici, D., et al. Multi-imager compatible, MR safe, remote center of motion needle-guide robot. IEEE Trans. Biomed. Eng. 65(1):165–177, 2018.

    Article  PubMed  Google Scholar 

  90. Su, H., et al. Fiber optic force sensors for MRI-guided interventions and rehabilitation: a review. IEEE Sens. J. 17(7):1952, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sugiyama, K., T. Sakai, I. Fujishima, H. Ryu, K. Uemura, and T. Yokoyama. Stereotactic interstitial laser-hyperthermia using Nd-YAG laser. Stereotact. Funct. Neurosurg. 54(1–8):501–505, 1990.

    Article  PubMed  Google Scholar 

  92. Sutherland, G. R., I. Latour, and A. D. Greer. Integrating an image-guided robot with intraoperative MRI. IEEE Eng. Med. Biol. Mag. 27(3):59–65, 2008.

    Article  PubMed  Google Scholar 

  93. Sutherland, G. R., I. Latour, A. D. Greer, T. Fielding, G. Feil, and P. Newhook. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery 62(2):286–293, 2008.

    Article  PubMed  Google Scholar 

  94. Taylor, R., et al. A steady-hand robotic system for microsurgical augmentation. Int. J Robot. Res. 18(12):1201–1210, 1999.

    Article  Google Scholar 

  95. The future of surgery. http://gelookahead.economist.com/slideshow/the-future-of-surgery/

  96. Tovar-Spinoza, Z., D. Carter, D. Ferrone, Y. Eksioglu, and S. Huckins. The use of MRI-guided laser-induced thermal ablation for epilepsy. Child’s Nerv. Syst. 29(11):2089–2094, 2013.

    Article  Google Scholar 

  97. Tyc, R., and K. J. Wilson. Laser surgery/cancer treatment: real-time interactivity enhances interstitial brain tumor therapy. Laser 5:01, 2010.

    Google Scholar 

  98. Varma, T., and P. Eldridge. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int. J. Med. Robot. Comput. Assist. Surg. 2(2):107–113, 2006.

    Article  CAS  Google Scholar 

  99. Visualase MRI-Guided Laser Ablation. http://www.medtronic.com/us-en/healthcare-professionals/products/neurological/laser-ablation/visualase.html (2017-07-10)

  100. Wang, W., et al. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy. Med. Phys. 42(12):7114–7121, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Zamorano, L., Q. Li, S. Jain, and G. Kaur. Robotics in neurosurgery: state of the art and future technological challenges. Int J. Med. Robot. Comput. Assist. Surg. 1(1):7–22, 2004.

    Article  CAS  Google Scholar 

  102. Zimmermann, M., R. Krishnan, A. Raabe, and V. Seifert. Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir. 146(7):697–704, 2004.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Yue Chen acknowledge Eric Barth and Robert Webster for their comments that greatly improved the manuscript. Yue Chen also thank Sang-Eun ‘Sam’ Song for the suggestions on MRI terminology.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Chen.

Additional information

Associate Editor Daniel Elson oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Godage, I., Su, H. et al. Stereotactic Systems for MRI-Guided Neurosurgeries: A State-of-the-Art Review. Ann Biomed Eng 47, 335–353 (2019). https://doi.org/10.1007/s10439-018-02158-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-018-02158-0

Keywords

Navigation