Skip to main content
Log in

Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy produces abnormal left ventricular (LV) blood flow patterns that are linked with thromboembolism (TE). We hypothesized that implantation of mechanical heart valves non-trivially influences TE risk in these patients, exacerbating abnormal LV flow dynamics. The goal of this study was to assess how mitral valve design impacts flow and hemodynamic factors associated with TE. The mid-plane velocity field of a silicone dilated LV model was measured in a mock cardiovascular loop for three different mitral prostheses, two with multiple orientations, and used to characterize LV vortex properties through the cardiac cycle. Blood residence time and a platelet shear activation potential index (SAP) based on the cumulative exposure to shear were also computed. The porcine bioprosthesis (BP) and the bileaflet valve in the anti-anatomical (BL-AA) position produced the most natural flow patterns. The bileaflet valves experienced large shear in the valve hinges and recirculating shear-activated flow, especially in the anatomical (BL-A) and 45-degree (BL-45) positions, thus exhibited high SAP. The tilting disk valve in the septal orientation (TD-S) produced a complete reversal of flow and vortex properties, impairing LV washout and retaining shear-activated fluid, leading to the highest residence time and SAP. In contrast, the tilting disk valve in the free-wall position (TD-F) exhibited mid-range values for residence time and SAP. Hence, the thrombogenic potential of different MHV models and configurations can be collectively ranked from lowest to highest as: BP, BL-AA, TD-F, BL-A, BL-45, and TD-S. These findings provide new insight about the effect of fluid dynamics on LV TE risk, and suggest that the bioprosthesis valve in the mitral position minimizes this risk by producing more physiological flow patterns in patients with dilated cardiomyopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Acker, M. A., M. Jessup, S. F. Bolling, J. Oh, R. C. Starling, D. L. Mann, H. N. Sabbah, R. Shemin, J. Kirklin, and S. H. Kubo. Mitral valve repair in heart failure: Five-year follow-up from the mitral valve replacement stratum of the Acorn randomized trial. J. Thorac. Cardiovasc. Surg. 142:569–574, 2011.

    Article  PubMed  Google Scholar 

  2. Benito, Y., Y. Martinez-Legazpi, L. Rossini, C. Perez del Villar, R. Yotti, Y. Martin Peinador, D. Rodriguez-Perez, C. Medrano, J. C. Antoranz, F. Fernandez-Aviles, J. C. del Alamo, J. Bermejo. Residence time and shear-stress of blood in the left ventricle. Impact of age-related changes in filling flow. submitted, 2018.

  3. Bermejo, J., Y. Benito, M. Alhama, R. Yotti, P. Martinez-Legazpi, C. P. Del Villar, E. Perez-David, A. Gonzalez-Mansilla, C. Santa-Marta, A. Barrio, F. Fernandez-Aviles, and J. C. Del Alamo. Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 306:H718–H729, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bluestein, D., K. B. Chandran, K. B. Manning, D. B. Luestein, K. B. C. Handran, and K. B. M. Anning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38(3):1236–1256, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bryan, A. J., C. A. Rogers, K. Bayliss, J. Wild, and G. D. Angelini. Prospective randomized comparison of CarboMedics and St. Jude Medical bileaflet mechanical heart valve prostheses: ten-year follow-up. J. Thorac. Cardiovasc. Surg. 133:614–622, 2007.

    Article  PubMed  Google Scholar 

  6. Carlhall, C. J., and A. Bolger. Advances in heart failure passing strange flow in the failing ventricle. Circ. Heart Fail. 3:326–331, 2010.

    Article  PubMed  Google Scholar 

  7. Coleman, H. W., and W. G. Steele. Experimentation, Validation, and Uncertainty Analysis for Engineers. Hoboken: Wiley, 2018.

    Book  Google Scholar 

  8. de Campos, N. L. K. L. Comparison of the occurrence of thromboembolic and bleeding complications in patients with mechanical heart valve prosthesis with one and two leaflets in the mitral position. Rev. Bras. Cir. Cardiovasc. 29:59–68, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Di Labbio, G., and L. Kadem. Jet collisions and vortex reversal in the human left ventricle. J. Biomech. 78:155–160, 2018.

    Article  CAS  PubMed  Google Scholar 

  10. Eckert, C. E., B. Zubiate, M. Vergnat, J. H. III Gorman, R. C. Gorman, and M. S. Sacks. In vivo dynamic deformation of the mitral valve annulus. Ann. Biomed. Eng. 37:1757–1771, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Emery, R. W., C. C. Krogh, S. McAdams, A. M. Emery, and A. R. Holter. Long-term follow up of patients undergoing reoperative surgery with aortic or mitral valve replacement using a St. Jude medical prosthesis. J. Heart Valve Dis. 19:473–484, 2010.

    PubMed  Google Scholar 

  12. Eriksson, J., C. J. Carlhäll, P. Dyverfeldt, J. Engvall, A. F. Bolger, and T. Ebbers. Semi-automatic quantification of 4D left ventricular blood flow. J. Cardiovasc. Magn. Reson. 12:9, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Faludi, R., M. Szulik, J. D’hooge, P. Herijgers, F. Rademakers, G. Pedrizzetti, and J.-U. Voigt. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J. Thorac. Cardiovasc. Surg. 139:1501–1510, 2010.

    Article  PubMed  Google Scholar 

  14. Fraser, K. H., T. Zhang, M. E. Taskin, B. P. Griffith, and Z. J. Wu. A quantitative comparison of mechanical blood damage parameters in rotary ventricular assist devices: shear stress, exposure time and hemolysis index. J. Biomech. Eng. 134(8):081002, 2012.

    Article  PubMed  Google Scholar 

  15. Hellums, J. D. 1993 Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  16. Hendabadi, S., J. Bermejo, Y. Benito, R. Yotti, F. Fernandez-Aviles, J. C. del Alamo, and S. C. Shadden. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann. Biomed. Eng. 41:2603–2616, 2013.

    Article  PubMed  Google Scholar 

  17. Hong, G.-R., G. Pedrizzetti, G. Tonti, P. Li, Z. Wei, J. K. Kim, A. Baweja, S. Liu, N. Chung, H. Houle, J. Narula, and M. A. Vannan. Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. JACC. Cardiovasc. Imaging 1:705–717, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.

    Article  CAS  PubMed  Google Scholar 

  19. Le Tourneau, T., V. Lim, J. Inamo, F. A. Miller, D. W. Mahoney, H. V. Schaff, and M. Enriquez-Sarano. Achieved anticoagulation vs prosthesis selection for mitral mechanical valve replacement: A population-based outcome study. Chest 136:1503–1513, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mächler, H., M. Perthel, G. Reiter, U. Reiter, M. Zink, P. Bergmann, A. Waltensdorfer, and J. Laas. Influence of bileaflet prosthetic mitral valve orientation on left ventricular flow–an experimental in vivo magnetic resonance imaging study. Eur. J. Cardiothorac. Surg. 26:747–753, 2004.

    Article  PubMed  Google Scholar 

  21. Martinez-Legazpi, P., J. Bermejo, Y. Benito, R. Yotti, C. Perez Del Villar, A. Gonzalez-Mansilla, A. Barrio, E. Villacorta, P. L. Sanchez, F. Fernandez-Aviles, and J. C. del Alamo. Contribution of the diastolic vortex ring to left ventricular filling. J. Am. Coll. Cardiol. 64:1711–1721, 2014.

    Article  PubMed  Google Scholar 

  22. Martinez-Legazpi, P., L. Rossini, C. Perez Del Villar, Y. Benito, C. Devesa-Cordero, R. Yotti, A. Delgado-Montero, A. Gonzalez-Mansilla, A. M. Kahn, F. Fernandez-Aviles, J. C. Del Alamo, and J. Bermejo. Stasis mapping using ultrasound: A prospective study in acute myocardial infarction. JACC. Cardiovasc. Imaging 11(3):514–515, 2018.

    Article  PubMed  Google Scholar 

  23. Maurer, M. M., D. Burkhoff, S. Maybaum, V. Franco, T. J. Vittorio, P. Williams, L. White, G. Kamalakkannan, J. Myers, and D. M. Mancini. A multicenter study of noninvasive cardiac output by bioreactance during symptom-limited exercise. J. Card. Fail. 15:689–699, 2009.

    Article  PubMed  Google Scholar 

  24. Meschini, V., M. D. De Tullio, G. Querzoli, and R. Verzicco. Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J. Fluid Mech. 2018. https://doi.org/10.1017/jfm.2017.725.

    Article  Google Scholar 

  25. Murray, C. D., and S. F. Dermott. Solar System Dynamics. Cambridge: Cambridge University Press, p. 17, 1999.

    Google Scholar 

  26. Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95(108101):1–4, 2005.

    Google Scholar 

  27. Pedrizzetti, G., F. Domenichini, and G. Tonti. On the left ventricular vortex reversal after mitral valve replacement. Ann. Biomed. Eng. 38:769–773, 2010.

    Article  PubMed  Google Scholar 

  28. Pierrakos, O. Vortex Dynamics and Energetics in Left Ventricular Flows. PhD diss., Virginia Tech and Wake Forest Univeristy, 2006.

  29. Prasongsukarn, K., W. R. E. Jamieson, and S. V. Lichtenstein. Performance of bioprosthesis and mechanical prostheses in age group 61–70 years. J. Heart Valve Dis. 14:501–8–510–1, 2005; (discussion 509).

    Google Scholar 

  30. Querzoli, G., S. Fortini, and A. Cenedese. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys. Fluids 22:1–10, 2010.

    Article  CAS  Google Scholar 

  31. Raghav, V., S. Sastry, and N. Saikrishnan. Experimental assessment of flow fields associated with heart valve prostheses using particle image velocimetry (PIV): Recommendations for best practices. Cardiovasc. Eng. Technol. 9:273–287, 2018.

    Article  PubMed  Google Scholar 

  32. Ramstack, J. M., L. Zuckerman, and L. F. Mockros. Shear-induced activation of platelets. J. Biomech. 12(2):113–125, 1979.

    Article  CAS  PubMed  Google Scholar 

  33. Ribeiro, A. H., O. C. Wender, A. S. de Almeida, L. E. Soares, and P. D. Picon. Comparison of clinical outcomes in patients undergoing mitral valve replacement with mechanical or biological substitutes: a 20 years cohort. BMC Cardiovasc. Disord. 14:146, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rossini, L., P. Martinez-Legazpi, Y. Benito, C. Pérez del Villar, A. Gonzalez-Mansilla, A. Barrio, M.-G. Borja, R. Yotti, A. M. Kahn, S. C. Shadden, F. Fernández-Avilés, J. Bermejo, and J. C. del Álamo. Clinical assessment of intraventricular blood transport in patients undergoing cardiac resynchronization therapy. Meccanica 52:563–576, 2017.

    Article  PubMed  Google Scholar 

  35. Rossini, L., P. Martinez-Legazpi, V. Vu, L. Fernández-Friera, C. Pérez del Villar, S. Rodríguez-López, Y. Benito, M.-G. Borja, D. Pastor-Escuredo, R. Yotti, M. J. Ledesma-Carbayo, A. M. Kahn, B. Ibáñez, F. Fernández-Avilés, K. May-Newman, J. Bermejo, and J. C. del Álamo. A clinical method for mapping and quantifying blood stasis in the left ventricle. J. Biomech. 49:2152–2161, 2016.

    Article  PubMed  Google Scholar 

  36. Sotiropoulos, F., T. B. Le, and A. Gilmanov. Fluid mechanics of heart valves and their replacements. Annu. Rev. Fluid Mech. 48:259–283, 2016.

    Article  Google Scholar 

  37. Westerdale, J. C., R. Adrian, K. Squires, H. Chaliki, and M. Belohlavek. Effects of bileaflet mechanical mitral valve rotational orientation on left ventricular flow conditions. Open Cardiovasc. Med. J. 9:62–68, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, K., G. Samaroo, I. Ling, W. Dembitsky, R. Adamson, J. C. del Álamo, K. May-Newman, J. C. del Alamo, and K. May-Newman. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J. Biomech. 47:1485–1494, 2014.

    Article  CAS  PubMed  Google Scholar 

  39. Xenos, M., G. Girdhar, Y. Alemu, J. Jesty, M. Slepian, S. Einav, and D. Bluestein. Device thrombogenicity emulator (DTE)—design optimization methodology for cardiovascular devices: A study in two bileaflet MHV designs. J. Biomech. 43:2400–2409, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zamarripa, G. M., L. A. Enriquez, W. Dembitsky, and K. May-Newman. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. ASAIO J. 54:237–244, 2008.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen May-Newman.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Appendices

Appendix A

Vortex identification was performed using the Q-criterion; and the instantaneous vortex circulation, KE density, position, and radius were computed at each time point. Circulation was defined as:

$$\varGamma = \mathop \smallint \limits_{A}^{ } \omega \left( {x,y} \right)dA,$$
(A1)

where ω(x,y) was the vorticity and A was the area enclosed within the vortex core50. Vortices were identified as CW or CCW depending on the sign of their circulation. KE density was defined as:

$$KE = \frac{1}{2}\rho \mathop \smallint \limits_{A}^{ } \varvec{v}(x,y)^{2} dA,$$
(2)

where \(\rho\) was the fluid density, and \(\varvec{v}\) was the modulus of the 2-D velocity vector. The position of the vortex centroid was defined as:

$$\left( {\begin{array}{*{20}c} {x_{C} } \\ {y_{C} } \\ \end{array} } \right) = \frac{1}{\varGamma }\mathop \smallint \limits_{A}^{ } \omega \left( {x,y} \right)\left( {\begin{array}{*{20}c} x \\ y \\ \end{array} } \right)dA.$$
(3)

The vortex core was fit to an ellipse with axes given by the 2nd order moments of the vorticity distribution

$${\mathcal{O}} = \frac{1}{\varGamma }\mathop \smallint \limits_{A}^{ } \omega \left( {x,y} \right)\left[ {\begin{array}{*{20}c} {\left( {x - x_{C} } \right)^{2} } & {\left( {x - x_{C} } \right)^{ } \left( {y - y_{C} } \right)^{ } } \\ {\left( {x - x_{C} } \right)^{ } \left( {y - y_{C} } \right)^{ } } & {\left( {y - y_{C} } \right)^{2} } \\ \end{array} } \right]dA,$$
(4)

such that the eigenvalues and eigenvectors of the matrix \({\mathcal{O}}\) provided the major and minor axes of the ellipse, and , and their orientation. The characteristic radius of the vortex was defined as

$$R = \sqrt {ab} ,$$
(5)

as previously described.28 The results were made independent of the threshold applied to the Q criterion, Qth, by recomputing the vortex properties over the area defined by an ellipse centered at (xc, yc) and with major and minor axes given by \(2a\) and \(2b\), and the aspect ratio calculated from a/b. This procedure was repeated iteratively until the vortex radius varied by less than 1% between iterations, which was usually achieved in 4-5 steps. Following previous studies,28 we defined an orthogonal anatomical reference system of the LV as the intersection of the long axis of the ventricle with the line that passes through the mitral annulus and the aortic tract. Vortex positions in this system were normalized by the long (range: 0 (mitral base) to 1 (apex)) and short (range: − 0.5 to +0.5) axes. The temporal waveforms for the radius, position, circulation, and KE were obtained and phase-averaged over the full CC for both main (CW) and secondary (CCW) vortices.

Appendix B: Shear Activation Potential Model and Fit to Experimental Data

Exposure of platelets to hemodynamic shear can trigger platelet activation. Although this process is not fully understood yet, it is recognized that both the intensity of the shear stresses and the cumulative time of exposure contribute to activation.15,32 To account for these two effects, one can model the activation and transport of platelets by blood flow using a forced advection equation

$$D_{t} {{\varSigma }} = \partial_{t} {{\varSigma }} + \nabla \cdot \left( {\varvec{v}{{\varSigma }}} \right) = \dot{\gamma }(x,y,t)^{\alpha } ,$$
(B1)

where \(\dot{\gamma }\)(x,y,t) is a measure of local instantaneous shear stress. This kind of models is common in the medical device literature.14 Using the scalar \({{\varSigma }}\) computed from Eq. (B1), we define a quantitative index that reflects the potential shear activation of platelets as \(SAP = {{\varSigma }}^{{\frac{1}{\alpha - 1}}}\), which has dimensions of shear rate (i.e. inverse time). In this model, the value of the exponent α dictates the importance of shear intensity compared to that of cumulative exposure time. In the hypothetical limit scenario α = 0, one recovers the residence time equation (Eq. (2) in the main text) and platelet activation is exclusively determined by exposure time regardless of shear intensity. Likewise, as α increases, \({{\varSigma }}\) reflects the accumulation of increasingly stronger shear events along the flow pathlines, and platelet activation is preferentially determined by shear intensity rather than by exposure time.

The actual value of α results from cellular and molecular biomechanical phenomena that are very difficult to study in vivo. However, it can be estimated by fitting the model [B1] to experimental data. In this study, we fit the model to Hellums’ collection of data15 (Fig. B1), which represents the locus of platelet activation as a function of shear intensity and shear exposure time. These data are well described by the power law (a straight line in the log–log plot) \(\dot{\gamma } \sim \sigma /\mu \approx 185 \frac{{dynes s^{1/2} }}{{cm^{2} }} t^{ - 1/2}\), where \(\mu = 3.8 \frac{dynes s}{{cm^{2} }}\) is the viscosity of blood. This fit suggests that \({{\varSigma }}\sim \dot{\gamma }^{2} t\)\(\approx 3 \times 10^{4} s^{ - 1}\) represents a unified criterion for platelet activation that combines shear exposure time and shear intensity. Thus, we used \(\alpha \approx 2\) to integrate Eq. (B1) and to calculate the SAP maps.

Figure B1
figure 7

Power law least-squares fit to Hellums’ experimental compilation of data on shear-mediated activation of platelets.

Appendix C: List of Acronyms

\(\dot{\gamma }\)—shear rate

MHV—mechanical heart valve

TE—thromboembolic events

BL—bi-leaflet

LV—left ventricle

DCM—dilated cardiomyopathy

MV—mitral valve

AoV—aortic valve

\(T_{R}\)—residence time

EF—ejection fraction

LVP—left ventricle pressure

AoP—aortic root pressure

QAO—aortic flow rate

BP—Medtronic 305 Cinch bio-prosthesis valve

TD-S—Medtronic Hall tilting-disk valve oriented with the large orifice directing flow towards the septum wall

TD-F—Medtronic Hall tilting-disk valve oriented with the large orifice directing flow towards the free wall

BL-A—Carbomedics bi-leaflet valve oriented in the anatomical position

BL-AA—Carbomedics bi-leaflet valve oriented in the anti-anatomical position

BL-45—Carbomedics bi-leaflet valve oriented at a 45° angle

PIV—Particle image velocimetry

PI—Pulsatility index

SAP—shear activation potential

KE—kinetic energy

CW—clockwise

CCW—counter-clockwise

Appendix D: List of Symbols

\(\dot{\gamma }\)—shear rate

\(T_{R}\)—residence time

\(Q_{AO} max\)—maximum aortic flow rate

\(Q_{AO} min\)—minimum aortic flow rate

\(Q_{AO} mean\)—average aortic flow rate

\(\vec{v}_{PIV}\)—velocity field

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu, V., Rossini, L., Montes, R. et al. Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle. Ann Biomed Eng 47, 1265–1280 (2019). https://doi.org/10.1007/s10439-019-02218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02218-z

Keywords

Navigation