Skip to main content
Log in

Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Aortic dissection occurs predominantly in the thoracic aorta and the mechanisms for the initiation and propagation of the tear in aortic dissection are not well understood. We study the tearing characteristics of the porcine thoracic aorta using a peeling test and we estimate the peeling energy per unit area in the ascending and the descending segments. The stretch and the peel force per unit width undergone by the peeled halves of a rectangular specimen are measured. We find that there can be significant variation in the stretch within the specimen and the stretch between the markers in the specimen varies with the dynamics of peeling. We found that in our experiment the stretch achieved in the peeled halves was such that it was in the range of the stretch at which the stress–stretch curve for the uniaxial experiment starts deviating from linearity. Higher peeling energy per unit area is required in the ascending aorta compared to the descending aorta. Longitudinal specimens required higher peeling energy per unit area when compared to the circumferential specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alfson, D. B., and S. W. Ham. Type b aortic dissections: current guidelines for treatment. Cardiol. Clin. 35(3):387–410, 2017.

    Article  PubMed  Google Scholar 

  2. Angouras, D. C., E. P. Kritharis, and D. P. Sokolis. Regional distribution of delamination strength in ascending thoracic aortic aneurysms. J. Mech. Behav. Biomed. Mater. 98:58–70, 2019.

    Article  CAS  PubMed  Google Scholar 

  3. Atienza, J. M., G. V. Guinea, F. J. Rojo, R. J. Burgos, C. García-Montero, F. J. Goicolea, P. Aragoncillo, and M. Elicesa. The influence of pressure and temperature on the behavior of the human aorta and carotid arteries. Rev.Esp. Cardiol. 60(3):259–267, 2007.

    Article  PubMed  Google Scholar 

  4. Grant, R. Content and distribution of aortic collagen, elastin and carbohydrate in different species. J. Atheroscler. Res. 7(4):463–472, 1967.

    Article  CAS  PubMed  Google Scholar 

  5. Hiratzka, L. F., G. L. Bakris, J. A. Beckman, R. M. Bersin, V. F. Carr, D. E. Casey, K. A. Eagle, L. K., Hermann, E. M., Isselbacher, E. A. Kazerooni, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. J. Am. Coll. Cardiol. 55(14):e27–e129, 2010.

    Article  PubMed  Google Scholar 

  6. Hosoda, Y., K. Kawano, F. Yamasawa, T. Ishii, T. Shibata, and S. Inayama. Age-dependent changes of collagen and elastin content in human aorta and pulmonary artery. Angiology 35(10):615–621, 1984.

    Article  CAS  PubMed  Google Scholar 

  7. Humphrey, J., and M. Epstein. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. Berlin: Springer, 2002.

  8. Kozuń, M. Delamination properties of the human thoracic arterial wall with early stage of atherosclerosis lesions. Acta Bioeng. Biomech. 54:229–238, 2016.

  9. Kozuń, M., M. Kobielarz, A. Chwiłkowska, and C. Pezowicz. The impact of development of atherosclerosis on delamination resistance of the thoracic aortic wall. J. Mech. Behav. Biomed. Mater. 79:292–300, 2018.

    Article  PubMed  Google Scholar 

  10. Kozuń, M., T. Płonek, M. Jasiński, and J. Filipiak. Effect of dissection on the mechanical properties of human ascending aorta and human ascending aorta aneurysm. Acta Bioeng. Biomech. 21:2, 2019.

    Google Scholar 

  11. Martin, C., T. Pham, and W. Sun. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardio-Thorac. Surg. 40(1):28–34, 2011.

    Article  Google Scholar 

  12. Milewicz, D. M., S. K. Prakash, and F. Ramirez. Therapeutics targeting drivers of thoracic aortic aneurysms and acute aortic dissections: insights from predisposing genes and mouse models. Annu. Rev. Med. 68:51–67, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Noble, C., N. Smulders, R., Lewis, M. J. Carré, S. E. Franklin, S. MacNeil, and Z. A. Taylor. Controlled peel testing of a model tissue for diseased aorta. J. Biomech. 49(15):3667–3675, 2016.

    Article  PubMed  Google Scholar 

  14. O’Leary, S. A., B. J. Doyle, and T. M. McGloughlin. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 37:165–173, 2014.

    Article  PubMed  Google Scholar 

  15. Pal, S., A. Tsamis, S. Pasta, A. D’Amore, T. G. Gleason, D. A. Vorp, and S. Maiti. A mechanistic model on the role of “radially-running” collagen fibers on dissection properties of human ascending thoracic aorta. J. Biomech. 47(5):981–988, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pape, L. A., M. Awais, E. M. Woznicki, T. Suzuki, S. Trimarchi, A. Evangelista, T. Myrmel, M. Larsen, K. M., Harris, K. Greason, et al. Presentation, diagnosis, and outcomes of acute aortic dissection: 17-year trends from the international registry of acute aortic dissection. J. Am. Coll. Cardiol. 66(4):350–358, 2015.

    Article  PubMed  Google Scholar 

  17. Pasta, S., J. A. Phillippi, T. G. Gleason, and D. A. Vorp. Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J. Thorac. Cardiovasc. Surg. 143(2):460–467, 2012).

    Article  PubMed  Google Scholar 

  18. Rivlin, R., and A. G. Thomas. Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10(3):291–318, 1953.

  19. Sherifova, S., and G. A. Holzapfel. Biomechanics of aortic wall failure with a focus on dissection and aneurysm: a review. Acta Biomater. 99:1–17, 2019.

  20. Silaschi, M., J. Byrne, and O. Wendler. Aortic dissection: medical, interventional and surgical management. Heart 103(1):78–87, 2017.

    Article  PubMed  Google Scholar 

  21. Sokolis, D. P. Passive mechanical properties and structure of the aorta: segmental analysis. Acta Physiol. 190(4):277–289, 2007.

    Article  CAS  Google Scholar 

  22. Sommer, G., T. C. Gasser, P. Regitnig, M. Auer, and G. A. Holzapfel. Dissection properties of the human aortic media: an experimental study. J. Biomech. Eng. 130(2):021007, 2008.

    Article  PubMed  Google Scholar 

  23. Tanaka, T. T., and Y.-C. Fung. Elastic and inelastic properties of the canine aorta and their variation along the aortic tree. J. Biomech. 7(4): 357–370, 1974.

    Article  CAS  PubMed  Google Scholar 

  24. Tong, J., Y. Cheng, and G. A. Holzapfel. Mechanical assessment of arterial dissection in health and disease: advancements and challenges. J. Biomech. 46(12):2366–2373, 2016.

    Article  PubMed  Google Scholar 

  25. Tong, J., T. Cohnert, P. Regitnig, J. Kohlbacher, R. Birner-Grünberger, A. J. Schriefl, G. Sommer, and G. A. Holzapfel. Variations of dissection properties and mass fractions with thrombus age in human abdominal aortic aneurysms. J. Biomech. 47(1):14–23, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Tong, J., G. Sommer, P. Regitnig, and G. A. Holzapfel. Dissection properties and mechanical strength of tissue components in human carotid bifurcations. Ann. Biomed. Eng. 39(6):1703–1719, 2011.

    Article  PubMed  Google Scholar 

  27. Tsamis, A., J. T. Krawiec, and D. A. Vorp. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J. R. Soc. Interface, 10(83):20121004, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. van Baardwijk, C., and M. R. Roach. Factors in the propagation of aortic dissections in canine thoracic aortas. J. Biomech. 20(1):67–73, 1987.

    Article  PubMed  Google Scholar 

  29. Wang, Y., J. Hahn, and Y. Zhang. Mechanical properties of arterial elastin with water loss. J. Biomech. Eng. 140(4):041012, 2018.

    Article  Google Scholar 

  30. Wang, Y., J. A. Johnson, F. G. Spinale, M. A. Sutton, and S. M. Lessner. Quantitative measurement of dissection resistance in intimal and medial layers of human coronary arteries. Exp. Mech. 55(4):677–683, 2014.

    Article  CAS  PubMed  Google Scholar 

  31. Witzenburg, C. M., R. Y. Dhume, S. B. Shah, C. E. Korenczuk, H. P. Wagner, P. W. Alford, and V. H. Barocas. Failure of the porcine ascending aorta: multidirectional experiments and a unifying microstructural model. J. Biomech. Eng. 139(3):031005, 2017.

    Article  Google Scholar 

  32. Wolinsky, H., and S. Glagov. A lamellar unit of aortic medial structure and function in mammals. Circ. Res. 20(1):99–111, 1967.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff at Rosenthal meat center for their help in acquiring the aorta samples. We would like to thank the anonymous referees for their suggestions in improving the manuscript. This research was funded by the Texas A&M Engineering Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandler C. Benjamin.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 4603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Myneni, M., Rao, A., Jiang, M. et al. Segmental Variations in the Peel Characteristics of the Porcine Thoracic Aorta. Ann Biomed Eng 48, 1751–1767 (2020). https://doi.org/10.1007/s10439-020-02489-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02489-x

Keywords

Navigation