Skip to main content
Log in

Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this article, we continue our study of a system described by a class of initial boundary value problem (IBVP) of the Korteweg-de Vries (KdV) equation and the KdV Burgers (KdVB) equation posed on a finite interval with nonhomogeneous boundary conditions. While the system is known to be locally well-posed (Kramer et al. arXiv:1012.1057, [2010]; Rivas et al. in Math. Control Relat. Fields 1:61–81, [2011]) and its small amplitude solutions are known to exist globally, it is not clear whether its large amplitude solutions would blow up in finite time or not. This problem is addressed in this article from control theory point of view: look for some appropriate feedback control laws (with boundary value functions as control inputs) to ensure that the finite time blow-up phenomena would never occur. In this article, a simple, but nonlinear, feedback control law is proposed and the resulting closed-loop system is shown not only to be globally well-posed, but also to be locally exponentially stable for the KdV equation and globally exponentially stable for the KdVB equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The interested readers are refereed to a nice article of de Jager [25] for the origin of the KdV equation.

  2. The reader is referred to [28] for the precise definition of s-compatibility for the IBVP (1.2). One of the sufficient conditions for ϕ,h 1,h 2,h 3 to be s-compatible is \(\phi\in H^{s}_{0} (0,L)\) and

    $$h_1\in H^{\frac{s+1}{3}}_0 (0,T], \quad h_2\in H^{\frac{s}{3}}_0 (0,T],\quad h_3\in H^{\frac{s-1}{3}}_0 (0,T].$$

References

  1. Bona, J.L., Sun, S., Zhang, B.-Y.: A nonhomogeneous boundary-value problem for the Korteweg-de Vries equation in a quarter plane. Trans. Am. Math. Soc. 354, 427–490 (2001)

    Article  MathSciNet  Google Scholar 

  2. Bona, J.L., Sun, S.M., Zhang, B.-Y.: Forced oscillations of a damped Korteweg-de Vries equation in a quarter plane. Commun. Contemp. Math. 5(3), 369–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bona, J.L., Sun, S., Zhang, B.-Y.: A nonhomogeneous boundary value problem for the KdV equation posed on a finite domain. Commun. Partial Differ. Equ. 28, 1391–1436 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bona, J.L., Sun, S., Zhang, B.-Y.: Non-homogeneous boundary value problems for the Korteweg-de Vries and the Korteweg-de Vries-Burgers equations in a quarter plane. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 25, 1145–1185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bona, J.L., Sun, S., Zhang, B.-Y.: The Korteweg-de Vries equation on a finite domain II. J. Differ. Equ. 247, 2558–2596 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boussinesq, J.: Essai sur la théorie des eaux courantes;. Mém. Présent. Divers Savants Acad. Sci. Inst. Nat. France 23, 1–680 (1877)

    Google Scholar 

  7. Bubnov, B.A.: Generalized boundary value problems for the Korteweg-de Vries equation in bounded domain. Differ. Equ. 15, 17–21 (1979)

    MathSciNet  MATH  Google Scholar 

  8. Bubnov, B.A.: Solvability in the large of nonlinear boundary-value problem for the Korteweg-de Vries equations. Differ. Equ. 16, 24–30 (1980)

    MATH  Google Scholar 

  9. Colliander, J., Kenig, C.: The generalized Korteweg–de Vries equation on the half line. Commun. Partial Differ. Equ. 27, 2187–2266 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Colin, T., Ghidaglia, J.-M.: An initial-boundary-value problem fo the Korteweg-de Vries equation posed on a finite interval. Adv. Differ. Equ. 6, 1463–1492 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Crépeau, E., Sorine, M.: A reduced model of pulsatile flow in an arterial compartment. Chaos Solitons Fractals 34(2), 594–605 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crépeau, E., Sorine, M.: Identifiability of a reduced model of pulsatile flow in an arterial compartment. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference, Seville, Spain, December 12–15 (2005)

    Google Scholar 

  13. Demiray, H.: Nonlinear waves in a thick-walled viscoelastic tube filled with inviscit fluid. Int. J. Eng. Sci. 36, 345–357 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Duan, W.-S., Wang, B.-R., Wei, R.-J.: Nonlinear waves propagating in an inhomogeneous blood vessel. Acta Phys. Sin., Overseas Ed. 6, 801–823 (1997)

    Article  Google Scholar 

  15. Faminskii, A.V.: The Cauchy problem and the mixed problem in the half strip for equation of Korteweg-de Vries type. Din. Sploš. Sredy 162, 152–158 (1983) (Russian)

    MathSciNet  Google Scholar 

  16. Faminskii, A.V.: A mixed problem in a semistrip for the Korteweg-de Vries equation and its generalizations. Din. Sploš. Sredy 258, 54–94 (1988). (Russian). English transl. in Trans. Moscow Math. Soc. 51, 53–91 (1989)

    Google Scholar 

  17. Faminskii, A.V.: Mixed problems for the Korteweg-de Vries equation. Sb. Math. 190, 903–935 (1999)

    Article  MathSciNet  Google Scholar 

  18. Faminskii, A.V.: On an initial boundary value problem in a bounded domain for the generalized Korteweg-de Vries equation. Funct. Differ. Equ. 8, 183–194 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Faminskii, A.V.: An initial boundary-value problem in a half-strip for the Korteweg-de Vries equation in fractional order Sobolev spaces. Commun. Partial Differ. Equ. 29, 1653–1695 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Faminskii, A.V.: Global well-posedness of two initial-boundary-value problems for the Korteweg-de Vries equation. Differ. Integral Equ. 20, 601–642 (2007)

    MathSciNet  MATH  Google Scholar 

  21. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  MATH  Google Scholar 

  22. Ghidaglia, J.-M.: Weakly damped forced Korteweg-de Vries equations behave as a finite-dimensional dynamical system in the long time. J. Differ. Equ. 74, 369–390 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ghidaglia, J.-M.: A note on the strong convergence towards attractors of damped forced KdV equations. J. Differ. Equ. 110, 356–359 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holmer, J.: The initial-boundary value problem for the Korteweg-de Vries equation. Commun. Partial Differ. Equ. 31, 1151–1190 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. de Jager, E.M.: On the origin of the Korteweg-de Vries equation. arXiv:math.HO/0602661

  26. Kenig, C.E., Ponce, G., Vega, L.: Well-posedness of the initial value problem for the Korteweg-de Vries equation. J. Am. Math. Soc. 4, 323–347 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Google Scholar 

  28. Kramer, G., Zhang, B.-Y.: Nonhomogeneous boundary value problems of the KdV equation on a bounded domain. J. Syst. Sci. Complex. 23, 499–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kramer, G., Rivas, I., Zhang, B.-Y.: Well-posedness of a class of non-homogeneous boundary value problems of the Korteweg-de Vries equation on a finite domain. arXiv:1012.1057

  30. Laleg, T.-M., Crépeau, E., Papelier, Y., Sorin, M.: Arterial blood pressure analysis based on scattering transform I. In: Engineering in Medicine and Biology Society, 29th Annual International Conference of the IEEE (2007)

    Google Scholar 

  31. Liu, W.-J., Krstić, M.: Global boundary stabilization of the Korteweg-de Vries-Burgers equation. J. Comput. Appl. Math. 21, 315–354 (2002)

    MATH  Google Scholar 

  32. Miura, R.M.: The Korteweg-de Vries equation: a survey of results. SIAM Rev. 18, 412–459 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, vol. 44. Springer, New York (1983)

    Book  MATH  Google Scholar 

  34. Rivas, I., Usman, M., Zhang, B.-Y.: Global well-posedness and asymptotic behavior of a class of initial-boundary-value problem of the Korteweg-de Vries equation on a finite domain. Math. Control Relat. Fields 1, 61–81 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tartar, L.: Interpolation non linéaire et régularité. J. Funct. Anal. 9, 469–489 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  36. Usman, M., Zhang, B.-Y.: Forced oscillations of the Korteweg-de Vries equation on a bounded domain and their stability. J. Syst. Sci. Complex. 20, 15–24 (2007)

    Article  MathSciNet  Google Scholar 

  37. Usman, M., Zhang, B.-Y.: Forced oscillations of a class of nonlinear dispersive wave equations and their stability. Discrete Contin. Dyn. Syst. 26(4), 1509–1523 (2010)

    MathSciNet  MATH  Google Scholar 

  38. Yang, Y., Zhang, B.-Y.: Forced oscillations of a damped Benjamin-Bona-Mahony equation in a quarter plane. In: Control Theory of Partial Differential Equations. Lect. Notes Pure Appl. Math., vol. 242, pp. 375–386. Chapman & Hall/CRC, Boca Raton (2005)

    Chapter  Google Scholar 

  39. Yomosa, S.: Solitary waves in large blood vessels. J. Phys. Soc. Jpn. 56(2), 506–520 (1987)

    Article  MathSciNet  Google Scholar 

  40. Zhang, B.-Y.: Forced oscillations of a regularized long-wave equation and their global stability. In: Differential Equations and Computational Simulations, pp. 456–463. World Scientific, River Edge (2000)

    Google Scholar 

  41. Zhang, B.-Y.: Forced oscillation of the Korteweg-de Vries-Burgers equation and its stability. In: Control of Nonlinear Distributed Parameter Systems. Lecture Notes in Pure and Appl. Math., vol. 218, pp. 337–357. Dekker, New York (2001)

    Google Scholar 

Download references

Acknowledgements

Chaohua Jia was partially supported by State Scholarship Fund of China (No. 2010602510) from China Scholarship Council (CSC), the National Natural Science Foundation of China (No.10626002) and the Fundamental Research Funds YWF-10-01-A15 for the Central Universities. Bing-Yu Zhang was partially supported by a grant from the Simons Foundation (#201615 to Bingyu Zhang), the Taft Memorial Fund at the University of Cincinnati and the Chunhui program (State Education Ministry of China) under grant Z007-1-61006. This work was conducted while Chaohua Jia was visiting Department of Mathematical Science, University of Cincinnati from February 2011 to February 2012 under the State Scholarship Fund of China. He would like to thank the University of Cincinnati for its hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Yu Zhang.

Additional information

The article is dedicated to Professor Goong Chen for his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, C., Zhang, BY. Boundary Stabilization of the Korteweg-de Vries Equation and the Korteweg-de Vries-Burgers Equation. Acta Appl Math 118, 25–47 (2012). https://doi.org/10.1007/s10440-012-9676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9676-4

Keywords

Navigation