Skip to main content
Log in

Natural Genome-Editing Competences of Viruses

  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

It is becoming increasingly evident that the driving forces of evolutionary novelty are not randomly derived chance mutations of the genetic text, but a precise genome editing by omnipresent viral agents. These competences integrate the whole toolbox of natural genetic engineering, replication, transcription, translation, genomic imprinting, genomic creativity, enzymatic inventions and all types of genetic repair patterns. Even the non-coding, repetitive DNA sequences which were interpreted as being ancient remnants of former evolutionary stages are now recognized as being of viral descent and crucial for higher-order regulatory and constitutional functions of protein structural vocabulary. In this article I argue that non-randomly derived natural genome editing can be envisioned as (a) combinatorial (syntactic), (b) context-specific (pragmatic) and (c) content-sensitive (semantic) competences of viral agents. These three-leveled biosemiotic competences could explain the emergence of complex new phenotypes in single evolutionary events. After short descriptions of the non-coding regulatory networks, major viral life strategies and pre-cellular viral life three of the major steps in evolution serve as examples: There is growing evidence that natural genome-editing competences of viruses are essential (1) for the evolution of the eukaryotic nucleus, (2) the adaptive immune system and (3) the placental mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ast G. (2005). The alternative genome. Scientific American 292: 58–65

    Article  Google Scholar 

  • Batzer M.A., D.L. Deininger (2002). ALU Repeats and Human Genomic Diversity. Nature Reviews Genetics 3: 370–380

    Article  Google Scholar 

  • Bell P.J.L. (2001). Viral Eukaryogenesis: Was the ancestor of the nucleus a complex DNAVirus? Journal of Molecular Evolution 53: 251–256

    Article  Google Scholar 

  • Bell, P.J.L. (2006). Sex and the eukaryotioc cell cycle is consistent with a viral ancestry for the eukaryotic nucleus. Journal of Theoretical Biology, Doi: 10.1016/j.jtbi.2006.05.015

  • Brett D., H. Pospisil, J. Valcarcel, J. Reich, P. Bork (2002). Alternative splicing and genome complexity. Nature Genetics 30: 29–30

    Article  Google Scholar 

  • Buchon N., C. Vaury (2006). RNAi: A defensive RNA-silencing against viruses and transposable elements. Heredity 96: 195–202

    Article  Google Scholar 

  • Carroll S.B. (2005). Evolution at two levels: On genes and form. PLoS Biology 3(7): e245

    Article  Google Scholar 

  • Deamer D., S. Singaram, S. Rajamani, V. Kompanichenko, S. Guggenheim (2006). Self-assembly processes in the prebiotic environment. Philosophical Transactions of the Royal Society 361: 1809–1818

    Article  Google Scholar 

  • Deepak G., P.P. Majumder, C.B. Rao, S.K. Brahmachari, M. Mukerji (2003). Nonrandom distribution of alu elements in genes of various functional categories: Insight from analysis of human chromosomes 21 and 22. Molecular Biology and Evolution 20: 1420–1424

    Article  Google Scholar 

  • Dupressoir, A., G. Marceau, C. Vernochet, L. Benit, C. Kanellopoulos, V. Sapin and T. Heidmann (2005). Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proceedings of the National Academy of Sciences of the USA 102: 725–730

    Google Scholar 

  • Eigen M., R. Winkler (1975). Das Spiel – Naturgesetze steuern den Zufall. München: Piper

    Google Scholar 

  • Eigen M., P. Schuster, W. Gardiner, R. Winkler-Oswatitsch (1981). The origin of genetic information. Scientific American 244: 78–94

    Article  Google Scholar 

  • Fire A. (2005). Nucleic acid structure and intracellular immunity: Some recent ideas from the world of RNAi. Quarterly Reviews of Biophysics 38: 303–309

    Article  Google Scholar 

  • Forterre, P. (2001). Genomics and early cellular evolution. The origin of the DNA world. Comptes rendus de l’Académie des sciences. Série 3, Sciences de la vie 324: 1067–1076

  • Forterre P. (2002). The origin of DNA genomes and DNA replication proteins. Current Opinion in Microbiology 5: 525–532

    Article  Google Scholar 

  • Forterre P. (2005). The two ages of the RNA world, and the transition to the DNA world: A story of viruses and cells. Biochimie 87: 793–803

    Article  Google Scholar 

  • Forterre P. (2006). The origin of viruses and their possible roles in major evolutionary transitions. Virus Research 117: 5–16

    Article  Google Scholar 

  • Gabora L. (2006). Self-other organization: Why early life did not evolve through natural selection. Journal of Theoretical Biology 241: 443–450

    Article  Google Scholar 

  • Gao X., E.R. Havecker, P.V. Baranov, J.F. Atkins, D.F. Voytas (2003). Translational recoding signals between gag and pol in diverse LTR retrotransposons. RNA 9: 1422–1430

    Article  Google Scholar 

  • Jablonka E., M.J. Lamb (1989). The inheritance of acquired epigenetic variations. Journal of Theoretical Biology 139: 69–83

    Google Scholar 

  • Jablonka, E. and M.J. Lamb (2002). The changing concept of epigenetics. In: Speybroeck, L.v., Vijver, G.V.d. and Waele, D.D. (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: 82–96

  • Jablonka E., M.J. Lamb (2006). The evolution of information in the major transitions. Journal of Theoretical Biology 239: 236–246

    Article  Google Scholar 

  • Jaenisch R., A. Bird (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genetics 33: 245–254

    Article  Google Scholar 

  • Jenuwein T., C.D. Allis (2001). Translating the histone code. Science 293: 1074–1080

    Article  Google Scholar 

  • Jortner J. (2006). Conditions for the emergence of life on the early earth: summary and reflections. Philosophical Transactions of the Royal Society 361: 1877–1891

    Article  Google Scholar 

  • Koonin E.V., T.G. Senkevich, V.V. Dolja (2006). The ancient virus world and evolution of cells. Biology Direct 1: 29

    Article  Google Scholar 

  • Mantegna R.N., S.V. Buldyrev, A.L. Goldberger, S. Havlin, S.C.K. Peng, M. Simons, H.E. Stanley (1994). Linguistic features of noncoding DNA sequences. Physical Review Letters 73: 3169–3172

    Article  Google Scholar 

  • Margulis, L. (1996). Archaeal-eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life. Proceedings of the National Academy of Sciences of the USA 93: 1071–1076

  • Margulis L. (1999). Die andere evolution. Heidelberg: Spektrum Akademischer Verlag

    Google Scholar 

  • Margulis L. (2004). Serial endosymbiotic theory (SET) and composite individuality. Transition from bacterial to eukaryotic genomes. Microbiology Today 31: 173–174

    Google Scholar 

  • Margulis, L., M.F. Dolan and R. Guerrero (2000). The chimeric eukaryote: Origin of the nucleus from the karyomastigont in amitochondriate protists. Proceedings of the National Academy of Sciences of the USA 97: 6954–6959

    Google Scholar 

  • Margulis L., D. Sagan (2002). Acquiring genomes. A theory of the origin of species. New York: Basic Books

    Google Scholar 

  • Mattick J.S., M.J. Gagen (2001). The evolution of controlled multitasked gene networks: The role of introns and other noncoding rnas in the development of complex organisms. Molecular Biology and Evolution 18: 1611–1630

    Google Scholar 

  • Mattick J.S. (2001). Non-coding RNAs: The architects of eukaryotic complexity. EMBO Reports 2: 986–991

    Article  Google Scholar 

  • Mattick J.S. (2003). Challenging the dogma: The hidden layer of noncoding RNAs in complex organisms. BioEssays 25: 930–939

    Article  Google Scholar 

  • Mattick J.S. (2005). Das verkannte Genom-Programm. Spektrum der Wissenschaft 3: 62–69

    Google Scholar 

  • Maynard Smith, J. (1983). Models of evolution. Proceedings of the Royal Society of Biological Sciences 219: 315–325

  • Odintsova M.S., N.P. Yurina (2000). RNA editing in plant chlorplasts and mitochondria. Fisiologia Rastenij 37: 307–320

    Google Scholar 

  • Odintsova M.S., N.P. Yurina (2005). Genomics and evolution of cellular organelles. Russian Journal of Genetics 41: 957–967

    Article  Google Scholar 

  • Pollard, K.S., S.R. Salama, N. Lambert, M.A. Lambot, S. Coppens, J.S. Pedersen, S. Katzman, B. King, C. Onodera, A. Siepel, A.D. Kern, C. Dehay, H. Igel, M. Ares Jr, P. Vanderhaegen and D. Haussler (2006). An RNA gene expressed during cortical development evolved rapidly in humans. Nature, DOI: 10.1038/nature05113

  • Roossinck M.J. (2005). Symbiosis versus competition in plant virus evolution. Nature Reviews Microbiology 3: 917–924

    Article  Google Scholar 

  • Ryan F.P. (2004). Human endogenous retroviruses in health and disease: a symbiotic perspective. Journal of the Royal Society of Medicine 97: 560–565

    Article  Google Scholar 

  • Ryan F.P. (2006). Genomic creativity and natural selection. A modern synthesis. Biological Journal of the Linnean Society 88: 655–672

    Article  Google Scholar 

  • Shabalina S.A., N.A. Spiridonov (2004). The mammalian transcriptome and the function of non-coding DNA sequences. Genome Biology 5: 105e

    Article  Google Scholar 

  • Shapiro, J.A. (2002). Genome organization and reorganization in evolution: Formatting for computation and function. In: Speybroeck, L.v., Vijver G.V.d. and Waele, DD. (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: 111–134

  • Shapiro J.A. (2004). A 21st century view of evolution: Genome system architecture, repetitive DNA, and natural genetic engineering. Gene 345: 91–100

    Article  Google Scholar 

  • Shapiro J.A., R. Sternberg (2005). Why repetitive DNA is essential to genome function. Biological Reviews 80: 1–24

    Article  Google Scholar 

  • Sternberg R. (2002). On the roles of repetitive DNA elements in the context of a unified genomic-epigenetic system. Annals of the New York Academy of Sciences 981: 154–188

    Article  Google Scholar 

  • Sternberg R., J.A. Shapiro (2005). How repeated retroelements format genome function. Cytogenetic and Genome Research 110: 108–116

    Article  Google Scholar 

  • Szathmary E. (2006). The origin of replicators and reproducers. Philosophical transactions of the Royal Society 361: 1761–1776

    Article  Google Scholar 

  • Taft R.J., J.S. Mattick (2004). Increasing biological complexity is positively correlated with the relative genome-wide expansion of non-protein-coding DNA sequences. Genome Biology 5: 1

    Article  Google Scholar 

  • True H., I. Berlin, S.L. Lindquist (2004). Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. Nature 431: 184–187

    Article  Google Scholar 

  • Turner B.M. (2000). Histone acetylation and an epigenetic code. BioEssays 22: 836–845

    Article  Google Scholar 

  • Turner B.M. (2002). Cellular memory and the histone code. Cell 111: 285–291

    Article  Google Scholar 

  • Van De Vijver G., L. Van Speybroeck and D. De Waele (2002). Epigentics: A challenge for genetics, evolution and development. In: Speybroeck, L.v., Vijver G.V.d. and D. DeWaele (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: 1–6

  • Van Speybroeck, L., G. Van de Vijver and D. DeWaele (2002). Preface. In: Speybroeck, L.v., Vijver G.V.d. and D. De Waele (Eds.). From Epigenesis to Epigenetics. The Genome in Context. Annals of the New York Academy of Sciences 981: vii

  • Vendrami D. (2004). Noncoding DNA and the teem theory of inheritance, emotions and innate behaviour. Medical Hypotheses 64: 512–519

    Article  Google Scholar 

  • Vetsigian, K., C. Woese, N. Goldenfeld (2006). Collective evolution and the genetic code. Proceedings of the National Academy of Sciences of the USA 103: 10696–10701

  • Villarreal, L.P. (2004). Can viruses make us humans? Proceedings of the American Philosophical Society 148: 296–323

    Google Scholar 

  • Villarreal L.P. (2005). Viruses and the Evolution of Life. Washington: American Society for Microbiology Press

    Google Scholar 

  • Villarreal L.P., V.R. DeFilippis, K.A. Gottlieb (2000). Acute and persistent viral life strategies and their relationship to emerging diseases. Virology 272: 1–6

    Article  Google Scholar 

  • Villarreal L.P., V.R. DeFilippis (2000). A hypothesis for DNA viruses as the origin of eukaryotic replication proteins. Journal of Virology 74: 7079–7084

    Article  Google Scholar 

  • Volff J.N. (2006). Turning junk into gold: Domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28: 913–922

    Article  Google Scholar 

  • Wächtershäuser G. (1992). Groundworks for an evolutionary biochemistry: the iron–sulphur world. Progress in Biophysics and Molecular Biology 58: 85–201

    Article  Google Scholar 

  • Wang, Y., W. Fischle, W. Cheung, S. Jacobs, S. Khorasanizadeh and C.D. Allis (2004). Beyond the double helix: Writing and reading the histone code. In: Bock, G. and Goode, J. (Eds.). Reversible Protein Acetylation. Novartis Foundation, Vol. 259, pp. 3–17

  • Watson, J.D., J. Witkowski, M. Gilman and M. Zoller (1992). Recombinant DNA. Scientific American Books

  • Wittgenstein L. (1972). Philosophical investigations. Oxford: Basil & Blackwell

    Google Scholar 

  • Witzany G. (1995). From the ‚logic of the molecular syntax’ to molecular pragmatism. Explanatory deficits in Manfred Eigen’s concept of language and communication. Evolution and Cognition 1: 148–168

    Google Scholar 

  • Witzany G. (2000). Life: The communicative structure. A new philosophy of biology. Norderstedt: Libri Books on Demand

    Google Scholar 

  • Witzany G. (2005). Natural history of life: History of communication logics and dynamics. SEED Journal 5: 27–55

    Google Scholar 

  • Witzany G. (2006a). The Logos of the Bios 1. Contributions to the foundation of a three-leveled biosemiotics. Helsinki: Umweb

    Google Scholar 

  • Witzany G. (2006b). Serial endosymbiotic theory (SET): The biosemiotic update. Acta Biotheoretica 54: 103–117

    Article  Google Scholar 

  • Xu Q., B. Modrek and C. Lee (2002). Genome-wide detection of tissue-specific alternative splicing in the human transcriptome. Nucleic Acids Research 30: 3754–3766

    Article  Google Scholar 

  • Zhang H.Y. (2006). The evolution of genomes and language. EMBO Reports 7:248–249

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Witzany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witzany, G. Natural Genome-Editing Competences of Viruses. Acta Biotheor 54, 235–253 (2006). https://doi.org/10.1007/s10441-006-9000-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-006-9000-7

Keywords

Navigation