Skip to main content
Log in

The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

An Erratum to this article was published on 04 December 2007

Abstract

The Earth agglomerates and heats. Convection cells within the planetary interior expedite the cooling process. Volcanoes evolve steam, carbon dioxide, sulfur dioxide and pyrophosphate. An acidulous Hadean ocean condenses from the carbon dioxide atmosphere. Dusts and stratospheric sulfurous smogs absorb a proportion of the Sun’s rays. The cooled ocean leaks into the stressed crust and also convects. High temperature acid springs, coupled to magmatic plumes and spreading centers, emit iron, manganese, zinc, cobalt and nickel ions to the ocean. Away from the spreading centers cooler alkaline spring waters emanate from the ocean floor. These bear hydrogen, formate, ammonia, hydrosulfide and minor methane thiol. The thermal potential begins to be dissipated but the chemical potential is dammed. The exhaling alkaline solutions are frustrated in their further attempt to mix thoroughly with their oceanic source by the spontaneous precipitation of biomorphic barriers of colloidal iron compounds and other minerals. It is here we surmise that organic molecules are synthesized, filtered, concentrated and adsorbed, while acetate and methane—separate products of the precursor to the reductive acetyl-coenzyme-A pathway—are exhaled as waste. Reactions in mineral compartments produce acetate, amino acids, and the components of nucleosides. Short peptides, condensed from the simple amino acids, sequester ‘ready-made’ iron sulfide clusters to form protoferredoxins, and also bind phosphates. Nucleotides are assembled from amino acids, simple phosphates carbon dioxide and ribose phosphate upon nanocrystalline mineral surfaces. The side chains of particular amino acids register to fitting nucleotide triplet clefts. Keyed in, the amino acids are polymerized, through acid–base catalysis, to alpha chains. Peptides, the tenuous outer-most filaments of the nanocrysts, continually peel away from bound RNA. The polymers are concentrated at cooler regions of the mineral compartments through thermophoresis. RNA is reproduced through a convective polymerase chain reaction operating between 40 and 100°C. The coded peptides produce true ferredoxins, the ubiquitous proteins with the longest evolutionary pedigree. They take over the role of catalyst and electron transfer agent from the iron sulfides. Other iron–nickel sulfide clusters, sequestered now by cysteine residues as CO-dehydrogenase and acetyl-coenzyme-A synthase, promote further chemosynthesis and support the hatchery—the electrochemical reactor—from which they sprang. Reactions and interactions fall into step as further pathways are negotiated. This hydrothermal circuitry offers a continuous supply of material and chemical energy, as well as electricity and proticity at a potential appropriate for the onset of life in the dark, a rapidly emerging kinetic structure born to persist, evolve and generate entropy while the sun shines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abrajano TA, Sturchio NC, Kennedy BM, Lyon GL, Muehlenbachs K, Bohlke JK (1990) Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl Geochem 5: 625–630

    Google Scholar 

  • Adams F (2002) Origins of existence: how life emerged in the universe. The Free Press, New York

    Google Scholar 

  • Allen JF (2005) A redox switch hypothesis for the origin of two light reactions in photosynthesis. FEBS Lett 579: 963–968

    Google Scholar 

  • Allen JF, Martin W (2007) Out of thin air. Nature 445:610–612

    Google Scholar 

  • Allen JF, Puthiyaveetil S, Ström J, Allen CA (2005) Energy transduction anchors genes in organelles. BioEssays 27:426–435

    Google Scholar 

  • Amend JP, Shock EL (2001) Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev 25: 175–243

    Google Scholar 

  • Ananyev GM, Zaltsman L, Vasko C and Dismukes GC (2001) The inorganic biochemistry of photosynthetic oxygen evolution/water oxidation. Biochim Biophys Acta 1503: 52–68

    Google Scholar 

  • Apps JA and P.C. Van der Kamp (1993) Energy gases of abiogenic origin in the Earth’s crust. The future of energy gases. US Geol Survey Prof Paper 1570: 81–132

    Google Scholar 

  • Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady-state no-continental-growth Earth. Phil Trans Roy Soc Lond (Ser A) 301: 443–472

    Google Scholar 

  • Armstrong RL (1991) The persistent myth of crustal growth. Aust J Earth Sci 38: 613–630

    Google Scholar 

  • Azuma M, Hashimoto K, Hiramoto M, Watanabe M and Sakata T (1990) Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media. J Electrochem Soc 137: 1772–1778

    Google Scholar 

  • Baaske P, Weinert F, Duhr S, Lemke K, Russell MJ, Braun D (2007) Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proc Natl Acad Sci USA 104:9346–9351

    Google Scholar 

  • Bach W, Paulick H, Garrido CJ, Ildefonse B, Meurer WP, Humphris SE (2006) Unraveling the sequence of serpentinization reactions: petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274). Geophys Res Lett 33:L13306, doi:10.1029/2006GL025681

  • Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152

    Google Scholar 

  • Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905–920

    Google Scholar 

  • Barnes I., O’Neil JR, Trescazes JJ (1978) Present day serpentinization in New Caledonia, Oman, and Yugoslavia. Geochim Cosmochim Acta 42:144–145

    Google Scholar 

  • Barney BM, Igarashi RY, Dos Santos PC, Dean DR, Seefeldt LC (2004) Substrate interaction at an iron–sulfur face of the FeMo-cofactor during nitrogenase catalysis. J Biol Chem 279: 53621–53624

    Google Scholar 

  • Baross JA, Hoffman SE (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig Life Evol Biosph 15:327–345

    Google Scholar 

  • Barrier N, Michel C, Maignan A, Hervieu M, Raveau B (2005) CaMn4O8, a mixed valence manganite with an original tunnel structure. J Mater Chem 15: 386–393

    Google Scholar 

  • Baymann F, Brugna M, Mühlenhoff U, Nitschke W (2001) Daddy, where did (PS)I come from? Biochim Biophys Acta 1507:291–310

    Google Scholar 

  • Baymann F, Lebrun E, Brugna M, Schoepp-Cothenet B, Giudici-Orticoni M-T, Nitschke W (2003) The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. Phil Trans Roy Soc Lond (Ser B) 358:267–274

    Google Scholar 

  • Beaumont V, Robert F (1998) Nitrogen isotope composition of organic matter from Precambrian cherts: new keys for nitrogen cycle evolution? Bull-Soc Geol France 169: 211–220

    Google Scholar 

  • Bekker A, Holland HD, Wang PL, Rumble D, Stein HJ, Hannah JL, Coetzand LL, Beukes NJ (2004) Dating the rise of atmospheric oxygen. Nature 427: 117–120

    Google Scholar 

  • Berg JM, Tymoczko JL, Stryer L (2007) Biochemistry. W.H. Freeman, New York

    Google Scholar 

  • Bernal JD (1960) The problem of stages in biopoesis. In: Florkin M (ed) Aspects of the origin of life. Pergamon Press, New York, pp 30–45

  • Bischoff JL, Seyfried WE (1978) Hydrothermal chemistry of seawater from 25 to 350°C. Am J Sci 278:838–860

    Article  Google Scholar 

  • Bjerrum CJ, Canfield DE (2002) Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Nature 417:159–162

    Google Scholar 

  • Black S (2000) A theory on the origin of life plus a brief history of biochemistry. Vantage Press, New York

    Google Scholar 

  • Blake S (2003) Correlations between eruption magnitude, SO2 yield, and surface cooling. In: Oppenheimer C, Pyle DM, Barclay J (eds) Volcanic degassing. Geological Society of London Special Publication 213, pp 371–380

  • Blankenship RE (2002) Molecular Mechanisms of Photosynthesis. Blackwell Science, Oxford

  • Bonomi F, Werth MT, Kurtz DM (1985) Assembly of FenSn(SR)2− (n = 2,4) in aqueous media from iron salts, thiols and sulfur, sulfide, thiosulfide plus rhodonase. Inorg Chem 24:4331–4335

    Google Scholar 

  • Bowring SA, Williams IS (1999) Priscoan (4.00-4.03 Ga) orthogneisses from northwest Canada. Contrib Mineral Petrol 134:3–16

    Google Scholar 

  • Boyce AJ, Coleman ML, Russell MJ (1983) Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature 306: 545–550

    Google Scholar 

  • Boyce AJ, Little CTS, Russell MJ (2003) A new fossil vent biota in the Ballynoe barite deposit, Silvermines, Ireland: Evidence for intracratonic sea-floor hydrothermal activity about 352 Ma. Econ Geol 98:649–656

    Google Scholar 

  • Boyington JC, Gladyshev VN, Khangulov SV, Stadtman TC, Sun PD (1997) Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster. Science 275: 1305–1308

    Google Scholar 

  • Braterman PS, Cairns-Smith AG, Sloper RA (1983) Photo-oxidation of hydrated Fe2+—significance for banded iron formations. Nature 303: 163–164

    Google Scholar 

  • Braun D, Libchaber A (2002) Trapping of DNA by thermophoretic depletion and convection. Phys Rev Lett 89: 188103

    Google Scholar 

  • Braun D, Libchaber A (2004) Thermal force approach to molecular evolution. Phys Biol 1: 1–8

    Google Scholar 

  • Breslow R (1959) On the mechanism of the formose reaction. Tetrahedron Lett 21: 22–26

    Google Scholar 

  • Brink H-J (2006) Do the global geodynamic cycles of the Phanerozoic represent afeedback system of the Earth and is the Moon involved as an acting external force? Z dt Ges Geowiss 157/1:17–40

    Google Scholar 

  • Brochier C, Philippe H (2002) A non-hyperthermophilic ancestor for bacteria. Nature 417: 244

    Google Scholar 

  • Cairns-Smith AG (1982) Genetic takeover and the mineral origins of life. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Cairns-Smith AG, Hall AJ, Russell MJ (1992) Mineral theories of the origin of life and an iron sulphide example. Orig Life Evol Biosph 22: 161–180

    Google Scholar 

  • Caldeira K, Kasting JF (1992) Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds. Nature 359: 226–228

    Google Scholar 

  • Cameron AGW (1963) The formation of the sun and planets. Icarus 1: 13–69

    Google Scholar 

  • Cammack R, Frey M, Robson R (2001) Hydrogen as a fuel: learning from nature. Taylor & Francis, London

    Google Scholar 

  • Canup RM, Agnor CB (2000) Accretion of the terrestrial planets and the earth-moon system. In: Canup RM, Righter K (eds) Origin of the earth and moon. Univ of Arizona Press, Tucson, pp 113–129

  • Canuto VM, Levine JS, Augustsson TR, Imhoff CL (1982) UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature 296: 816–820

    Google Scholar 

  • Catling DC, Claire MW (2005) How Earth’s atmosphere evolved to an oxic state: a status report. Earth Planet Sci Lett 23:1–20

    Google Scholar 

  • Catling DC, Zahnle KJ, McKay CP (2001) Biogenic methane, hydrogen escape, and the irreversible oxidation of early Earth. Science 293: 839–843

    Google Scholar 

  • Catling DC, Glein CR, Zahnle KJ, McKay CP (2005)Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5: 415–438

    Google Scholar 

  • Chapelle FH, O’Neill K, Bradley PM, Methé BA, Ciufo SA, Knobel L-RL, Lovley DR (2002) A hydrogen-based subsurface microbial community dominated bymethanogens. Nature 415:312–315

    Google Scholar 

  • Claypool GE, Kaplan LR (1974) The origin and distribution of methane in marine sediments. In: Kaplan LR (ed) Natural gases in marine sediments. Plenum Press, New York, pp 94–139

  • Cockell CS (2006) The origin and emergence of life under impact bombardment. Phil Trans Roy Soc (Ser B) 361:1845–1856

    Google Scholar 

  • Cockell CS, Knowland J (1999) UV radiation screening compounds. Biol Rev 74: 311–345

    Google Scholar 

  • Cody GD (2004) Transition metal sulfides and the origin of metabolism. Ann Rev Earth Planet Sci 32:569–599

    Google Scholar 

  • Cody GD, Boctor NZ, Filley TR, Hazen RM, Scott JH, Sharma A, Yoder HS (2000) Primordial carbonylated iron–sulfur compounds and the synthesis of pyruvate. Science 289:1337–1340

    Google Scholar 

  • Cody GD, Boctor NZ, Hazen RM, Brandes JA, Morowitz HJ, Yoder HS (2001) Geochemical roots of autotrophic carbon fixation: hydrothermal experiments in the system citric acid, H2O−(±FeS)−(±NiS). Geochim Cosmochim Acta 65: 3557–76

    Google Scholar 

  • Coleridge ST (1795) The Æolian Harp. In Mays JCC (ed) The collected works of Samuel Taylor Coleridge, Vol 16, Poetical works. Part 1. Poems, 2001. Princeton University Press, Princeton, pp 231–233

  • Connell GJ, Illangasekare M, Yarus M (1993) Three small ribooligonucleotides with specific arginine sites. Biochem 32:5497–5502

    Google Scholar 

  • Copley RR, Barton GJ (1994) A structural analysis of phosphate and sulphate binding sites in proteins: estimation of propensities for binding and conservation of phosphate binding sites. J Mol Biol 242: 321–329

    Google Scholar 

  • Copley SD, Smith E, Morowitz HJ (2005) A mechanism for the association of amino acids with their codons and the origin of the genetic code. Proc Natl Acad Sci USA 102:4442–4447

    Google Scholar 

  • Corliss JB (1986) On the creation of living cells in submarine hot spring flow reactors: attractors and bifurcations in the natural hierarchy of dissipative systems. Orig Life Evol Biosph 16: 381–382

    Google Scholar 

  • Corliss JB, Baross JA, Hoffmann SE (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanol Acta 4(Suppl):59–69

    Google Scholar 

  • Corning PA, Kline SJ (1998) Thermodynamics, information and life revisited, Part I: `To be or entropy'. Syst Res 15:273–295

    Google Scholar 

  • Conn MM, Prudent JR, Schultz PG (1996) Porphyrin metalation catalyzed by a small RNA molecule. J Am Chem Soc 118:7012–7013

    Google Scholar 

  • Coveney RM, Goebel ED, Zeller EJ, Dreschhoff GAM, Angino EE (1987) Serpentinization and the origin of hydrogen gas in Kansas. Bull Am Assoc Petrol Geol 71:39–48

    Google Scholar 

  • Crabtree RH (1997) Where smokers rule. Science 276: 222

    Google Scholar 

  • Dagan T, Martin W (2007) Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA 104: 870–875

    Google Scholar 

  • Dance I (2005) The hydrogen chemistry of the FeMo-co active site of nitrogenase. J Am Chem Soc 127: 10925–10942

    Google Scholar 

  • Darnault C, Volbeda A, Kim EJ, Legrand P, Vernède X, Lindahl PA, Fontecilla-Camps JC (2003) Ni-Zn-[Fe4-S4] and Ni-Ni-[Fe4-S4] clusters in closed and open α-subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat Struct Biol 10: 271–279

    Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64: 847–867

    Google Scholar 

  • Davis EE, Becker K (1999) Tidal pumping of fluids from the oceanic crust: new observations and opportunities for sampling the crustal hydrosphere. Earth Planet Sci Lett 172:141–149

    Google Scholar 

  • de Souza-Barros F, Braz-Levigard R, Ching-San Y, Monte MMB, Bonapace JAP, Montezano V, Vieyra A (2007) Phosphate sorption and desorption on pyrite in primitive aqueous scenarios: relevance of acidic → alkaline transitions. Orig Life Evol Biosph 37: 27–45

    Google Scholar 

  • de Zwart II, Meade SJ, Pratt AJ (2004) Biomimetic phosphoryl transfer catalysed by iron(II)-mineral precipitates. Geochim Cosmochim Acta 68: 4093–4098

    Google Scholar 

  • Delano JW (2001) Redox history of the Earth’s interior since 3900 Ma: implications for prebiotic molecules. Orig Life Evol Biosph 31: 311–341

    Google Scholar 

  • DeLillo D (1998) Underworld. Picador, New York

    Google Scholar 

  • Dewar R (2003) Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states. J Phys A Math Gen 36:631–641

    Google Scholar 

  • DeWulf DW, Jin T, Bard AJ (1989) Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J Electrochem Soc 136:1686–1691

    Google Scholar 

  • Di Giulio M (2003) The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J Theor Biol 221:425–436

    Google Scholar 

  • Dobbeck H, Svetlitchnyi V, Gremer L, Huber R, Meyer O (2001) Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293: 1281–1285

    Google Scholar 

  • Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128

    Google Scholar 

  • Doukov TI, Iverson TM, Seravalli J, Ragsdale SW, Drennan CL (2002) A Ni–Fe–Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298:567–572

    Google Scholar 

  • Douville E, Charlou JL, Oelkers EH, Bienvenu P, Colon CFJ, Donval JP, Fouquet Y, Prieur D, Appriou P (2002) The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem Geol 184:37–48

    Google Scholar 

  • Drennan CL, Heo J, Sintchak MD, Schreiter E, Ludden PW (2001) Life on carbon monoxide: X-ray structure of Rhodospirillium rubrum Ni–Fe–S carbon monoxide dehydrogenase. Proc Natl Acad Sci USA 98: 11973–11978

    Google Scholar 

  • Dunnill P (1966) Triplet nucleotide aminoacid pairing: a stereochemical basis for the division between protein and non protein aminoacids. Nature 210: 1267–1268

    Google Scholar 

  • Eck RV, Dayhoff MO (1966) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366

    Google Scholar 

  • Eigen M, Schuster P (1978) The hypercycle: a principle of natural self-organization. Part C. The realistic hypercycle. Naturwissenschaften 65:347–369

    Google Scholar 

  • Eikerling M, Kornyshev AA, Kucernak AR (2006) Water in polymer electrolyte fuel cells: friend or foe? Phys Today, October, pp 38–44

  • Einsle O, Tezcan FA, Andrade SLA, Schmid B, Yoshida M, Howard JB, Rees DC (2002) Nitrogenase MoFe-protein at 1.16 Å resolution: a central ligand in the FeMo-cofactor. Science 297:1696–1700

    Google Scholar 

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci. 26:597–604

    Google Scholar 

  • Eschenmoser A (1988) Vitamin B12: experiments concerning the origin of its molecular structure. Angew Chem (Int Ed Engl) 27: 5–39

    Google Scholar 

  • Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284:2118– 2124

    Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility. Science 234: 189–193

    Google Scholar 

  • Farias ST, Moreira CH, Guimarães RC (2007) Structure of the genetic code suggested by the hydropathy correlation between anticodons and amino acid residues. Orig Life Evol Biosph 37:83–103

    Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13

    Google Scholar 

  • Farquhar J, Bao H, Thiemens MH (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Google Scholar 

  • Ferrer M, Golyshina OV, Beloqui1 A, Golyshin PN, Timmis KN (2007) The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445: 91–94

    Google Scholar 

  • Ferris FG, Jack TR, Bramhill BJ (1992) Corrosion products associated with attached bacteria at an oil field water injection plant. Can J Microbiol 38: 1320–1324

    Article  Google Scholar 

  • Ferris JP, Hill AR, Liu R, Orgel LE (1996) Synthesis of long prebiotic oligomers on mineral surfaces. Nature 381: 59–61

    Google Scholar 

  • Ferry JG, House CH (2006) The step-wise evolution of early life driven by energy conservation. Mol Biol Evol 23:1286–1292

    Google Scholar 

  • Filtness MJ, Butler IB, Rickard D (2003) The origin of life: the properties of iron sulphide membranes. Trans Inst Mining Metall Appl Earth Sci 112B:171–172

    Google Scholar 

  • Fisher AT (2005) Marine hydrogeology: recent accomplishments and future opportunities. Hydrogeol J 13: 69–97

    Google Scholar 

  • Fontecilla-Camps JC, Ragsdale SW (1999) Nickel–iron–sulfur active sites: hydrogenase and CO dehydrogenase. Adv Inorg Chem 47:283–333

    Article  Google Scholar 

  • Fox SW (1959) Biological overtones of the thermal theory of biochemical origins. Bull Am Inst Biol Sci 9:20–23

    Google Scholar 

  • Früh-Green GL, Kelley DD, Bernascono SM et al. (2003) 30,000 years of hydrothermal activity at the Lost City vent field. Science 301:495–498

    Google Scholar 

  • Fuchs G (1989) Alternative pathways of autotrophic CO2 fixation. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech, Madison, WI, pp 365–382

  • Fuchs G (1994) Variations of the acetyl-CoA pathway in diversely related microorganisms that are not acetogens. In: Drake G (ed) Acetogenesis. Chapman & Hall, New York, pp 506–538

  • Fuchs G (1999a) Biosynthesis of building blocks. In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Stuttgart, Thieme, pp 110–160

  • Fuchs G (1999b) Assimilation of macroelements and microelements In: Lengeler JW, Drews G, Schlegel HG (eds) Biology of the prokaryotes. Stuttgart, Thieme, pp 163–186

  • Fusz S, Eisenführ A, Srivatsan SG, Heckel A, Famulok M (2005) A ribozyme for the aldol reaction. Chem Biol 12:941–950

    Google Scholar 

  • Gaffey MJ (1997) The early solar system. Orig Life Evol Biosph 27: 185–203

    Google Scholar 

  • Gaines SM (2001) Carbon Dreams. Creative Arts Book Company, Berkeley, CA

    Google Scholar 

  • Gaucher EA, Thomson JM, Burgan M, Benner SA (2003) Inferring the palaeoenvironment of ancient bacteria on the basis of resurrected proteins. Nature 425: 285–288

    Google Scholar 

  • Geptner A, Kristmannsdöttir H, Kristjánsson JK, Marteinsson VTh (2002) Biogenic saponite from an active submarine hot spring, Iceland. Clays Clay Miner 50: 174–185

    Google Scholar 

  • Glasby GP (1998) Earliest life in the Archean: rapid dispersal of CO2-utilizing bacteria from submarine hydrothermal vents. Episodes, pp 252–256

  • Goldschmidt VM (1952) Geochemical aspects of the origin of complex organic molecules on Earth, as precursors to organic life. New Biol 12:97–105

    Google Scholar 

  • Griffin GW (1977) Ozone and oxides of nitrogen production during thunderstorms. J Geophys Res 82: 943–950

    Google Scholar 

  • Grotzinger JP (1994) Trends in Precambrian carbonate sediments and their implication for understanding evolution. In: Bengtson S (ed) Early life on Earth: Nobel symposium 84. Columbia University Press, New York, pp 245–258

  • Gurevich AV, Zybin KP (2005) Runaway breakdown and the mysteries of lightning. Phys Today, May, pp 37–43

  • Haeckel E (1870) Natürliche schöpfungsgeschichte: Gemeinverständliche wissenschaftliche vorträge über die entwickelungslehre im allgemeinen und diejenige von Darwin, Goethe und Lamarck im besonderen, über die anwendung derselben auf den ursprung des menschen und andere damit zusammenhängende grundfragen der naturwissenschaft. Georg Reimer, Berlin, 688 p

  • Haeckel E (1876) The history of creation: or the development of the Earth and its inhabitants by the action of natural causes, a popular exposition of evolution in general, and that of Darwin, Goethe and Lamark in particular, Vol 1, translated by E.R. Lankester. Henry S. King & Co., London, 374 p

  • Hagan WJ, Parker A, Steuerwald A, Hathaway M (2007) Phosphate solubility and the cyanate-mediated synthesis of pyrophosphate. Orig Life Evol Biosph 37:113–122

    Google Scholar 

  • Hall DO, Cammack R, Rao KK (1971) Role for ferredoxins in the origin of life and biological evolution. Nature 233: 136–138

    Google Scholar 

  • Hartman H (1975) Speculations on the origin and evolution of metabolism. J Mol Evol 4:359–370

    Google Scholar 

  • Harvey RB (1924) Enzymes of thermal algae. Science 50: 481–482

    Google Scholar 

  • Hayes JM, Waldbauer JR (2006) The carbon cycle and associated redox processes through time. Phil Trans Roy Soc Lond (Ser. B) 361:931–950

    Google Scholar 

  • Heath C, Lahaye Y, Stone WE, Lambert DD (2001) Origin of variations in nickel tenor along the strike of the Edwards lode nickel sulfide orebody, Kambalda, Western Australia. Can Mineral 39: 655–671

    Google Scholar 

  • Heinen W, Lauwers AM (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Orig Life Evol Biosph 26: 131–150

    Google Scholar 

  • Heinen W, Lauwers AM (1997) The iron–sulfur world and the origins of life: abiotic synthesis from metallic iron, H2S and CO2: a comparison of the thiol generating FeS/HCl(H2S)/CO2-system and its Fe0/H2S/CO2-counterpart. Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam 100, pp 11–25

  • Helz GR, Miller CV, Charnock JM, Mosselmans JFW, Pattrick RAD, Garner CD, Vaughan DJ (1996) Mechanism of molybdenum removal from the sea and its concentration in black shales. EXAFS evidence. Geochim Cosmochim Acta 60: 3631–3642

    Google Scholar 

  • Henderson-Sellers A, Henderson-Sellers B (1988) Equable climate in the early Archaean. Nature 336: 117–118

    Google Scholar 

  • Hengeveld R (2007) Two approaches to the study of the origin of life. Acta Biotheor 55 (this issue). doi: 10.1007/s10441-007-9017-6

  • Hennet RJ-C, Holm NG, Engel MH (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: a perpetual phenomenon? Naturwissenschaften 79: 361–365

    Google Scholar 

  • Herrera AL (1942) A new theory of the origin and nature of life. Science 96: 14

    Google Scholar 

  • Hirsch AKH, Fischer FR, Diederich F (2007) Phosphate recognition in structural biology. Angew Chem (Int Ed Engl) 46:338–352

    Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis, in Hanchar JM, Hoskin PWO, eds., Zircon: Min Soc America, Reviews in Mineralogy and Geochemistry 53:27–62

  • Hovland M (2002) On the self-sealing nature of marine seeps. Continental Shelf Res 22: 2387–2394

    Google Scholar 

  • Huber C, Wächtershäuser G (1997) Activated acetic acid by carbon fixation on (Fe,Ni)S under primordial conditions. Science 276: 245–247

    Google Scholar 

  • Huber C, Wächtershäuser G (1998) Peptides by activation of amino acids on (Fe,Ni)S surfaces: implications for the origin of life. Science 281:670–672

    Google Scholar 

  • Huber C, Wächtershäuser G (2003) Primordial reductive amination revisited. Tetrahedron Lett 44: 1695–1697

    Google Scholar 

  • Huber C, Wächtershäuser G (2006) α-hydroxy and α-amino acids under possible Hadean, volcanic origin-of-life conditions. Science 314:630–632

    Google Scholar 

  • Huber C, Eisenreich W, Hecht S, Wächtershäuser G (2003) A possible primordial peptide cycle. Science 301: 938–940

    Google Scholar 

  • Huntrieser H, Feigl C, Schlager H, Schröder F, Gerbig C, van Velthoven P, Flatøy F, Théry C, Petzold A, Höller H, Schumann U (2002) Airborne measurements of NOx, tracer species, and small particles during the European Lightning Nitrogen Oxides Experiment. J Geophys Res 107:D11, 4113, 10.1029/2000JD000209

  • Janecky DR, Seyfried WE (1983) The solubility of magnesium-hydroxide-sulfate-hydrate in seawater at elevated temperatures and pressures. Am J Sci 283:831–860

    Article  Google Scholar 

  • Jaynes ET (1979) Where do we stand on maximum entropy? In: Levine RD, Tribus M (eds) The maximum entropy principle. MIT, Cambridge, MA, USA, pp 15–118

  • Jadhav VR, Yarus M (2002) Coenzymes as ribozymes. Biochimie 84:877–888

    Google Scholar 

  • Johnston WK, Unrau PJ, Lawrence MS, Glasner ME, Bartel DP (2001) RNA-catalyzed RNA polymerization: accurate and general RNA-templated primer extension. Science 292:1319–1325

    Google Scholar 

  • Jupp T and Schultz A (2000) A thermodynamic explanation for black smoker temperatures. Nature 403:880–883

    Google Scholar 

  • Kakegawa T, Noda M, Nannri H (2002) Geochemical cycles of bio-essential elements on the early Earth and their relationships to the origin of life. Resour Geol 52: 83–89

    Article  Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33: 865–868

    Google Scholar 

  • Kasting JF, Ackerman TP (1986) Climatic consequences of very high carbon dioxide levels in the earth’s early atmosphere. Science 234:1383–1385

    Google Scholar 

  • Kasting JF, Brown LL (1998) The early atmosphere as a source of biogenic compounds. In: Brack A (ed) The molecular origins of life. Cambridge University Press, Cambridge, pp 35–56

    Google Scholar 

  • Kasting JF, Eggler DH, Raeburn SP (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. J Geol 101:245–257

    Article  Google Scholar 

  • Kasting JF, Zahnle KJ, Pinto JP, Young AT (1989) Sulfur, ultraviolet radiation, and the early evolution of life. Orig Life Evol Biosph 19: 95–108

    Google Scholar 

  • Kasting JF, Howard MT, Wallmann K, Veizer J, Shields G, Jaffrés J (2006) Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet Sci Lett 252:82–93

    Google Scholar 

  • Katona G, Carpentier P, Nivière V, Amara P, Adam V, Ohana J, Tsanov N, Bourgeois D (2007) Raman-assisted crystallography reveals end-on peroxide intermediates in a nonheme iron enzyme. Science 316: 449–453

    Google Scholar 

  • Kazmierczak J, Altermann W (2002) Neoarchean biomineralization by benthic cyanobacteria. Science 298: 2351

    Google Scholar 

  • Kell DB (1988) Protonmotive energy-transducing mechanisms: some physical principles and experimental approaches. In: Anthony C (ed) Bacterial energy transduction. Academic Press, London, pp 429–490

    Google Scholar 

  • Kelley DS, Karson JA, Blackman DK et al (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30° N. Nature 412:145–149

    Google Scholar 

  • Kelley DS, Karson JA, Früh-Green GL et al. (2005) A serpentinite-hosted ecosystem: The Lost City Hydrothermal field. Science 307:1428–1434

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108

    Google Scholar 

  • Kempe S, Kazmierczak J, Degens ET (1989) The soda ocean concept and its bearing on biotic evolution. In: Crick RE (ed) Origin, evolution and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 29–43

    Google Scholar 

  • Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3:53–76

    Google Scholar 

  • Kleidon A (2004) Beyond Gaia: thermodynamics of life and earth system functioning. Clim Change 66:271–319

    Google Scholar 

  • Kleidon A, Lorenz RD (eds) (2005) Non-equilibrium thermodynamics and the production of entropy: life, Earth, and beyond. Springer Verlag, pp 260

  • Kling GW, Tuttle ML, Evans WC (1989) The evolution of thermal structure and water chemistry in Lake Nyos. J Volcanol Geotherm Res 39: 151–165

    Google Scholar 

  • Knight RD, Landweber LF (1998) Rhyme or reason: RNA–arginine interactions and the genetic code. Chem Biol 5:215–220

    Google Scholar 

  • Knight RD, Landweber LF (2000) The early evolution of the genetic code. Cell 101:569–572

    Google Scholar 

  • Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30: 1079–1082

    Google Scholar 

  • Koonin EV, Martin W (2005) On the origin of genomes and cells within inorganic compartments. Trends Genet 21: 647–654

    Google Scholar 

  • Krishnan M, Ugaz VM, Burns MA (2002) PCR in a Rayleigh-Bénard convection cell. Science 298:793

    Google Scholar 

  • Krishnarao JSR (1964) Native nickel–iron alloy, its mode of occurrence, distribution and origin. Econ Geol 59: 443–448

    Google Scholar 

  • Krupp RE (1994) Phase relations and phase transformations between low temperature iron sulfides mackinawite, greigite and smythite. Eur J Mineral 6: 389–396

    Google Scholar 

  • Kuhn H, Kuhn C (2003) Diversified world: drive to life’s origin. Angew Chem Int Ed 42:262–266

    Google Scholar 

  • Kump LR, Seyfried WE (2005) Hydrothermal Fe fluxes during the Precambrian: effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers. Earth Planet Sci Lett 235: 654–662

    Google Scholar 

  • Kusakabe M, Tanyileke GZ, McCord SA, Schladow SG (2000) Recent pH and CO2 profiles at Lakes Nyos and Monoun, Cameroon: implications for the degassing strategy and its numerical simulation. J Volcanol Geotherm Res 97:241–260

    Google Scholar 

  • Lancaster JR (ed) (1988) The bioinorganic chemistry of nickel. VCH, Weinheim, Germany

    Google Scholar 

  • Lane N (2004) Oxygen: the molecule the made the world. Oxford University Press, Oxford

  • Lawrence MS, Bartel DP (2003) Processivity of ribozyme catalyzed RNA polymerase. Biochemistry 42: 8748–8755

    Google Scholar 

  • Lawrence MS, Bartel DP (2005) New ligase-derived RNA polymerase ribozymes. RNA 11:1173–1180

    Google Scholar 

  • Leduc S (1911) The mechanism of life. Rebman Ltd, London

    Google Scholar 

  • Leman L, Orgel L, Ghadiri MR (2004) Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306:283–286

    Google Scholar 

  • Lesher CM, Stone WE (1997) Exploration geochemistry of komatiites. In: Wyman DA (ed) Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration, vol 12. Short Course Notes, Geological Society of Canada, pp 153–204

  • Lind J (1988) Hausmannite (Mn3O4) conversion to manganite (γ-MnOOH) in dilute oxalate. Environ Sci Technol 22:62–70

    Google Scholar 

  • Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ (1997) Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277: 1106–1109

    Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Google Scholar 

  • Loreau M (1995) Consumers as maximizers of matter and energy flow in ecosystems. Am Nat 15: 237–240

    Google Scholar 

  • Lorenz EN (1996) The essence of chaos. University of Washington Press, Seattle, WA

  • Lorenz R (2003) Full steam ahead—probably. Science 299: 837–838

    Google Scholar 

  • Lorenz RD (2002) Planets, life and the production of entropy. Int J Astrobiol 1: 3–13

    Google Scholar 

  • Lotka AJ (1945) The law of evolution as a maximal principle. Human Biol 17: 167–194

    Google Scholar 

  • Lovelock J (1988) The ages of gaia. Oxford University Press, Oxford

    Google Scholar 

  • Lovelock J (2001) Homage to gaia: the life of an independent scientist. Oxford University Press, Oxford

    Google Scholar 

  • Lowell RP, Keller SM (2003) High-temperature seafloor hydrothermal circulation over geologic time and archean banded iron formations. Geophys Res Lett 30:1391. doi: 10.1029/2002GL016536

    Google Scholar 

  • Ludwig KA, Kelley DS, Butterfield DA, Nelson BK, Früh-Green G (2006) Formation and evolution of carbonate chimneys at the Lost City hydrothermal field. Geochim Cosmochim Acta 70:3625–3645

    Google Scholar 

  • Macleod G, McKeown C, Hall AJ, Russell MJ (1994) Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Orig Life Evol Biosph 24:19–41

    Google Scholar 

  • Maden BEH (2000) Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C1 metabolism. Biochem J 350: 609–629

    Google Scholar 

  • Maisonneuve J (1982) The composition of the Precambrian ocean waters. Sediment Geol 31:1–11

    Google Scholar 

  • Marshall WL (1994) Hydrothermal synthesis of amino acids. Geochim Cosmochim Acta 58: 2099–2106

    Google Scholar 

  • Marteinsson VTh, Kristjánsson JK, Kristmannsdöttir H et al. (2001) Discovery of giant submarine smectite cones on the seafloor in Eyjafjordur, Northern Iceland, and a novel thermal microbial habitat. Appl Environ Microbiol 67:827–833

    Google Scholar 

  • Martin W, Russell MJ (2003) On the origin of cells: an hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil Trans Roy Soc Lond (Ser B) 358: 27–85

    Google Scholar 

  • Martin W, Russell MJ (2007) On the origin of biochemistry at an alkaline hydrothermal vent. Phil Trans Roy Soc Lond (Ser.B), DOI 10.1098/rstb.2002.1183

  • Martin W, Rote C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, fungi first (?), and a tree of genomes revisited. Life 55: 193–204

    Google Scholar 

  • Maurette M, Brack A, Duprat J, Engrand C (2004) Delivery of micrometeoritic greenhouse gases and “smoke” particles during the post-lunar “late heavy bombardment” of the Earth. 35th COSPAR Scientific Assembly, 18–25 July, Abstract 04-A-02754, Paris

  • McCollom T, Seewald JS (2003) Experimental constraints on the hydrothermal reactivity of organic acids and acid anions. I. Formic acid and formate. Geochim Cosmochim Acta 67:3625–3644

    Google Scholar 

  • Mehta MP, Baross JA (2006) Nitrogen fixation at 92°C by a hydrothermal vent archaeon. Science 314: 1783–1786

    Google Scholar 

  • Mellersh AR (1993) A model for the prebiotic synthesis of peptides which throws light on the origin of the genetic code and the observed chirality of life. Orig Life Evol Biosph 23: 261–274

    Google Scholar 

  • Mellersh AR, Wilkinson A-S (2000) RNA bound to a solid phase can select an amino acid and facilitate subsequent amide bond formation. Orig Life Evol Biosph 30:3–7

    Google Scholar 

  • Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Centralbl 30: 278–288; 289–303: 321–347; 353–367

  • Miller SR, Wingard CE, Castenholz RW (1998) Effects of visible light and UV radiation on photosynthesis in a population of a hot spring cyanobacterium, a Synechococcus sp., subjected to high-temperature stress. Appl Environ Microbiol 64:3893–3899

    Google Scholar 

  • Milner-White EJ (1997) The partial charge of the nitrogen atom in peptide bonds. Protein Sci 6: 2477–2482

    Google Scholar 

  • Milner-White EJ, Russell MJ (2005) Nests as sites for phosphates and iron–sulfur thiolates in the first membranes: 3 to 6 residue anion-binding motifs. Orig Life Evol Biosph 35: 19–27

    Google Scholar 

  • Milner-White EJ, Nissink WM, Allen FH, Duddy WJ (2004) Recurring main chain anion-binding motifs in short polypeptides. Acta Crystallogr (Sect D) 60: 1935–1942

    Google Scholar 

  • Mitchell P (1967) Proton-translocation phosphorylation in mitochondria, chloroplasts and bacteria: natural fuel cells and solar cells. Fed Am Soc Exp Biol 26:1370–1379

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the earth’s surface 4,300 Myr ago. Nature 409: 178–181

    Google Scholar 

  • Moore PB, Steitz TA (2003) After the ribosome structures: how does peptidyl transferase work? RNA 9: 155–159

    Google Scholar 

  • Morel FMM, Price NM (2003) The biogeochemical cycles of trace metals in the oceans. Science 300: 944–947

    Google Scholar 

  • Morita RY (2000) Is H2 the universal energy source for long-term survival? Microb Ecol 38: 307–320

    Google Scholar 

  • Morowitz H, Smith E (2006) Energy flow and the organization of life. Santa Fé Special Paper #06–08–029

  • Morse JW, Arakaki T (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochim Cosmochim Acta 57: 3635–3640

    Google Scholar 

  • Morse JW, Mackenzie FT (1998) Hadean ocean carbonate geochemistry. Aquat Chem 4: 301–319

    Google Scholar 

  • Moulton V, Gardner PP, Pointon RF, Creamer LK, Jameson GB, Penny D (2000) RNA folding argues against a hot origin of life. J Mol Evol 51:416–421

    Google Scholar 

  • Mulkidjanian AY, Junge W (1997) On the origin of photosynthesis as inferred from sequence analysis? A primordial UV-protector as common ancestor of reaction centers and antenna proteins. Photosynth Res 51:27–42

    Google Scholar 

  • Müller V (2003) Energy conservation in acetogenic bacteria. Appl Environ Microbiol, pp 6345–6353

  • Muth GW, Orteleva-Donnelly L, Strobel SA (2000) A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289:947–950

    Google Scholar 

  • Navarro-González R, McKay CP, Mvondo DN (2001) A possible nitrogen crisis for Archaean life due to reduced nitrogen fixation by lightning. Nature 412:61–64

    Google Scholar 

  • Neal C, Stanger G (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwater in Oman, and their significance to the process of serpentinization. Mineral Mag 48: 237–241

    Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409: 1083–1091

    Google Scholar 

  • Nissen P, Hansen J, Muth GW, Ban N, Moore PB, Strobel SA, Steitz TA (2001) Mechanism of ribosomal peptide bond formation. Science 291: 203

    Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930

    Google Scholar 

  • Osborn HF (1917) The origin and evolution of life: on the theory of action, reaction and interaction of energy. Charles Scribner’s Sons, New York

    Google Scholar 

  • Ostro S, Russell MJ (in review) Nickel–iron micrometeorites at 4.4 Ga—grist to emergent life’s mill

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740

    Google Scholar 

  • Pace NR (2002) The large scale topology of the tree of life. Abstract. Astrobiology 2: 484

    Google Scholar 

  • Palandri JL, Reed MH (2004) Geochemical models of metasomatism in ultramafic systems: serpentinization, rodingitization, and sea floor carbonate chimney precipitation. Geochim Cosmochim Acta 68: 1115–1133

    Google Scholar 

  • Pavlov AA, Toon OB, Pavlov AK, Bally J, Pollard D (2005) Passing through a giant molecular cloud: “Snowball” glaciations. Geophys Res Lett 32, L03705, doi:10.1029/2004GL021890

  • Penny D (2005) An interpretative review of the origin of life research. Biol Phil 20: 633–671

    Google Scholar 

  • Phoenix VR, Konhauser KO, Adams DG, Bottrell SH (2001) Role of biomineralization as an ultraviolet shield: implications for Archean life. Geology 29: 823–826

    Google Scholar 

  • Pontes-Buarque M, Tessis AC, Lopez AC, de Monte MBM, Bonapace JAP, Vieyra AR, Souza-Barros F (2001) Modulation of adenosine 5’-monophosphate adsorption onto aqueous resident pyrite: potential mechanisms for prebiotic reactions. Orig Life Evol Biosph 31: 343–362

    Google Scholar 

  • Pratt JM (1993) Nature’s design and use of catalysts based on Co and the macrocyclic corrin ligand: 4 ×  109 years of coordination chemistry. Pure Appl Chem 65: 1513–1520

    Google Scholar 

  • Proskurowski G, Lilley MD, Kelley DS, Olson EJ (2006) Low temperature volatile production at the Lost City Hydrothermal Field, evidence from a hydrogen stable isotope geothermometer. Chem Geol 229:331–343

    Google Scholar 

  • Pullman B (1972) Electronic factors in biochemical evolution. In: Ponnamperuma C (ed) Exobiology. North Holland Publishing Company, Amsterdam, pp 136–169

    Google Scholar 

  • Raymond J, Siefert JL, Staples CR, Blankenship RE (2004) The natural history of nitrogen fixation. Mol Biol Evol 21: 541–554

    Google Scholar 

  • Reysenbach AL, Lovley DR (2002) Geoglobus ahangari, gen. nov., sp., nov., a novel hyperthermophile capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe (III) serving as the sole electron accepter. Int J Syst Evol Microbiol 52:719–728

    Google Scholar 

  • Rickard D, Morse JW (2005) Acid volatile sulfide (AVS). Mar Chem 97: 141–197

    Google Scholar 

  • Rickard D, Butler IB, Olroyd A (2001) A novel iron sulphide switch and its implications for earth and planetary science. Earth Planet Sci Lett 189: 85–91

    Google Scholar 

  • Robert F, Chaussidon M (2006) A palaeotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443: 969–972

    Google Scholar 

  • Roche Applied Science (1992) Biochemical pathways: Roche Diagnostics GmbH, Mannheim

  • Rosing MT, Frei R (2004) U-rich Archaean sea-floor sediments from Greenland—indications of > 3700 Ma oxygenic photosynthesis. Earth Planet Sci Lett 217: 237–244

    Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Glassley W, Albarede F (2006) The rise of continents—an essay on the geologic consequences of photosynthesis. Palaeogeogr Palaeoclimatol Palaeoecol 232: 99–113

    Google Scholar 

  • Rouse RC, Peacor DR, Freed RL (1988) Pyrophosphate groups in the structure of canaphite, CaNa2P2O7.4H2O: the first occurrence of a condensed phosphate as a mineral. Am Mineral 73:168–171

    Google Scholar 

  • Russell MJ (1995) The generation at hot springs of sedimentary ore deposits, microbialites and life. Ore Geol Rev 10:199–214

    Google Scholar 

  • Russell MJ (2002) From the Journeywork of the Stars to the Wealth of Nations: A Refrain. In: Loose G, Brown J, Russell M (eds) (Conveners) Glasgow Poetry Festival

  • Russell MJ (2003) On the importance of being alkaline. Science 302: 580–581

    Google Scholar 

  • Russell MJ, Skauli H (1991) A history of theoretical developments in carbonate-hosted base metal deposits and a new tri-level enthalpy classification. Econ Geol Monogr 8:96–116

    Google Scholar 

  • Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2: 97–111

    Article  Google Scholar 

  • Russell MJ, Hall AJ (1997) The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. J Geol Soc Lond 154: 377–402

    Google Scholar 

  • Russell MJ, Hall AJ (2002) From geochemistry to biochemistry: chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochem News 113:6–12

    Google Scholar 

  • Russell MJ, Hall AJ (2006) The onset and early evolution of life. In: Kesler SE and Ohmoto H (eds) Evolution of early earth’s atmosphere, hydrosphere, and biosphere—constraints from ore deposits. Geological Society of America, Memoir, vol 198, pp 1–32

  • Russell MJ, Martin W (2004) The rocky roots of the acetyl-CoA pathway. Trends Biochem Sci 29: 358–363

    Google Scholar 

  • Russell MJ, Daia DE, Hall AJ (1998) The emergence of life from FeS bubbles at alkaline hot springs in an acid ocean. In: Wiegel J, Adams MWW (eds), Thermophiles: The keys to molecular evolution and the origin of life. Taylor & Francis, Washington, pp 77–126

    Google Scholar 

  • Russell MJ, Daniel RM, Hall AJ, Sherringham J (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. J Mol Evol 39:231–243

    Google Scholar 

  • Russell MJ, Hall AJ, Cairns-Smith AG, Braterman PS (1988) Submarine hot springs and the origin of life. Nature 336:117

    Google Scholar 

  • Russell MJ, Hall AJ, Turner D (1989) In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiments. Terra Nova 1:238–241

    Google Scholar 

  • Russell MJ, Hall AJ, Mellersh AR (2003) On the dissipation of thermal and chemical energies on the early Earth: the onsets of hydrothermal convection, chemiosmosis, genetically regulated metabolism and oxygenic photosynthesis. In: Ikan R (ed) Natural and laboratory-simulated thermal geochemical processes. Kluwer Academic Publishers, Dordrecht, pp 325–388

    Google Scholar 

  • Russell MJ, Hall AJ, Fallick AE and Boyce AJ (2005) On hydrothermal convection systems and the emergence of life. Econ Geol 100: 419–438

    Google Scholar 

  • Sanchez RA, Ferris JP and Orgel LE (1967) Studies in prebiotic synthesis II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide. J Mol Biol 30: 223–253

    Google Scholar 

  • Sánchez-Baracaldo P, Haye PK and Blank CE (2005) Morphological and habitat evolution in the cyanobacteria using a compartmentalization approach. Geobiology 3: 145–165

    Google Scholar 

  • Sandiford M, McLaren S (2002) Tectonic feedback and the ordering of heat producing elements within the continental lithosphere. Earth Planet Sci Lett 204: 133–150

    Google Scholar 

  • Sauer K, Yachandra VK (2004) The water-oxidation complex in photosynthesis. Biochim Biophys Acta Bioenerg 1655:140–148

    Google Scholar 

  • Schaefer L, Fegley B (2007) Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186:462–483

    Google Scholar 

  • Schönheit P, Schäfer T (1995) Metabolism of hyperthermophiles. World J Microbiol Biotechnol 11:26–57

    Google Scholar 

  • Schoonen MAA, Xu Y, Bebie J (1999) Energetics and kinetics of the prebiotic synthesis of simple organic and amino acids with the FeS-H2/FeS2 redox couple as reductant. Orig Life Evol Biosph 29: 5–32

    Google Scholar 

  • Schrödinger E (1944) What is life? The physical aspects of the living cell. Cambridge University Press, Cambridge

    Google Scholar 

  • Schulte MD, Rogers KL (2004) Thiols in hydrothermal solution: standard partial molar properties and their role in the organic geochemistry of hydrothermal environments. Geochim Cosmochim Acta 68: 1087–1097

    Google Scholar 

  • Schwartzman D, Lineweaver CH (2005) Temperature, biogenesis and biospheric self-organization. In: Kleidon A, Lorenz R (eds), Non-equilibrium thermodynamics and the production of entropy: life, earth and beyond. Springer Verlag, Berlin, pp 207–217

  • Seefeldt LC, Dance IG, Dennis RD (2004) Substrate interactions with nitrogenase: Fe versus Mo. Biochemistry 43:1401–1409

    Google Scholar 

  • Seewald JS, Zolotov MY, McCollom T (2006) Experimental investigation of single carbon compounds under hydrothermal conditions. Geochim Cosmochim Acta 70:446–460

    Google Scholar 

  • Seyfried WM, Bischoff JL (1981) Experimental seawater-basalt interaction at 300°C, 500 bars: chemical exchange, secondary mineral formation, and implications for transport of heavy metals. Geochim Cosmochim Acta 45: 135–147

    Google Scholar 

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth-Sci Rev 64:243–272

    Google Scholar 

  • Shock EL (1990) Geochemical constraints on the origin of organic compounds in hydrothermal systems. Orig Life Evol Biosph 20: 331–367

    Google Scholar 

  • Shock EL (1992) Chemical environments of submarine hydrothermal systems. Orig Life Evol Biosph 22: 67–107

    Google Scholar 

  • Shock E (1995) Organic acids in hydrothermal solution: standard molal thermodynamic properties of carboxylic acids and estimates of dissociation constants at high temperatures and pressures. Am J Sci 295:496–580

    Article  Google Scholar 

  • Shock EL, McCollom T, Schulte MD (1998) The emergence of metabolism from within hydrothermal systems. In Wiegel J, Adams MWW (eds) Thermophiles: the keys to molecular evolution and the origin of life. Taylor & Francis, Washington, pp 59–76

    Google Scholar 

  • Sigurdsson H, Devine JD, Tchoua FM, Presser TS, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroon. J Volcanol Geotherm Res 31:1–16

    Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the early Earth. Proc Natl Acad Sci USA 98: 3666–3672

    Google Scholar 

  • Sleep NH, Meibom A, Fridriksson Th, Coleman RG, Bird DK (2004) H2-rich fluids from serpentinization. Geochemical and biotic implications. Proc Natl Acad Sci USA 101:12818–12823

    Google Scholar 

  • Smith A (1776) An inquiry into the nature and causes of the wealth of nations. W. Strahan and T. Cadell, Edinburgh

  • Smolin L (1997) The life of the cosmos. Weidenfeld & Nicolson, London

    Google Scholar 

  • Sowerby SJ, Heckl WM (1998) The role of self-assembled monolayers of the purine and pyridine bases in the emergence of life. Orig Life Evol Biosph 28:283–310

    Google Scholar 

  • Sukumaran PV (2000) Evolution of the atmosphere and the oceans: evidence from the geological record. Resonance 5:4–12

    Google Scholar 

  • Svetlitchnyi V, Dobbeck H, Meyer-Klaucke W, Meins T, Thiele B, Römer P, Huber R, Meyer O (2004) A functional Ni-Ni-[4Fe4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc Natl Acad Sci USA 101:446–451

    Google Scholar 

  • Swenson R (1989) Emergent attractors and the law of maximum entropy production: foundations to a theory of general evolution. Syst Res 6: 187–197

    Google Scholar 

  • Swenson R (1997) Autocatakinetics, evolution, and the law of maximum entropy production: a principled foundation towards the study of human ecology. Adv Human Ecol 6: 1–47

    Google Scholar 

  • Tamaura Y, Tabata M (1990) Complete reduction of carbon dioxide to carbon using cation-excess magnetite. Nature 346: 255–256

    Google Scholar 

  • Tarasow TM, Tarasow SL, Eaton BE (1997) RNA-catalysed carbon–carbon bond formation. Nature 389: 54–57

    Google Scholar 

  • Taylor P, Rummery TE, Owen DG (1979) Reactions of iron monosulfide solids with aqueous hydrogen sulfide up to 160°C. J Inorg Nucl Chem 41:1683–1687

    Google Scholar 

  • Tessis AC, Penteado-Fava A, Pontes-Buarques M, de Amorim HS, Bonapace JAP, de Souza-Barros F, Monte MBM, Vieyra A (1999) Pyrite suspended in artificial sea water catalyzes hydrolysis of adsorbed ATP: enhancing effect of acetate. Origins Life Evol Biosph 29:361–374

    Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephensen. Microbiology (Amsterdam) 144: 2377–2406

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41: 100–180

    Google Scholar 

  • Tice MM, Lowe DR (2006) Hydrogen-based carbon fixation in the earliest known photosynthetic organisms. Geology 34: 37–40

    Google Scholar 

  • Trincher KS (1965) Biology and information: elements of biological thermodynamics. Consultants Bureau, New York

    Google Scholar 

  • Tsukiji S, Pattnaik SB, Suga H (2004) Reduction of an aldehyde by a NADH/Zn2+-dependent redox active ribozyme. J Am Chem Soc 126:5044–5045

    Google Scholar 

  • Tyryshkin AM, Watt RK, Baranov SV, Dasgupta J, Hendrich MP, Dismukes GC (2006) Spectroscopic evidence for Ca2+ involvement in the assembly of the Mn4Ca cluster in the photosynthetic water-oxidizing complex. Biochem 45:12876–12889

    Google Scholar 

  • Ueno Y, Maruyama S, Isozaki Y, Yurimoto H (2001) Early Archean (ca. 3.5 Ga) microfossils and 13C-depleted carbonaceous matter in the North Pole area, Western Australia: Field occurrence and geochemistry. In: Nakashima S, Marayuma S, Brack A, Windley BF (eds) Geochemistry and the origin of life. Universal Academy Press Inc., Tokyo, pp 203–236

    Google Scholar 

  • Unrau PJ, Bartel DP (1998) RNA-catalysed nucleotide synthesis. Nature 395:260–263

    Google Scholar 

  • Vaughan DJ, Craig JR (1978) Mineral chemistry of metal sulfides. Cambridge University Press, Cambridge

    Google Scholar 

  • Vaughan DJ, Ridout MS (1971) Mössbauer studies of some sulfide minerals. J Inorg Nucl Chem 33: 741–747

    Google Scholar 

  • Vladimirov MG, Ryzhkov YF, Alekseev VA, Bogdanovskaya VA, Otroshchenko VA, Kritsky MS (2004) Electrochemical reduction of carbon dioxide on pyrite as a pathway for abiogenic formation of organic molecules. Orig Life Evol Biosph 34:347–360

    Google Scholar 

  • Volbeda A, Fontecilla-Camps JC (2005a) Structure-function relationships of nickel–iron sites in hydrogenase and a comparison with the active sites of other nickel–iron enzymes. Coord Chem Rev 249:1609–1619

    Google Scholar 

  • Volbeda A, Fontecilla-Camps JC (2005b) Structural bases for the catalytic mechanism of Ni-containing carbon monoxide dehydrogenases. Dalton Trans 2005:3443 – 3450

    Google Scholar 

  • von Neumann J (1951) The general and logical theory of automata. In: Jeffress LA (ed) Cerebral mechanisms in behavior—The Hixon Symposium. Wiley, New York, pp 1–31

    Google Scholar 

  • Wächtershäuser G (1988a) Pyrite formation, the first energy source for life: a hypothesis. Syst Appl Microbiol 10:207–210

    Google Scholar 

  • Wächtershäuser G (1988b) Before enzymes and templates: theory of surface metabolism. Microbiol Rev 52: 452–484

    Google Scholar 

  • Wächtershäuser G (1990) Evolution of the first metabolic cycles. Proc Natl Acad Sci USA 87:200–204

    Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archaea and Eukarya. Phil Trans Roy Soc Lond (Ser B) 361: 1787–1808

    Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life Evol Biosph 16: 117–127

    Google Scholar 

  • Watson JD, Milner-White EJ (2002) A novel main chain anion-binding site in proteins: the nest. A particular combination of ϕ,Ψ values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. J Mol Biol 315:171–182

    Google Scholar 

  • Wenner DB, Taylor HP (1971) Temperatures of serpentinization of ultramafic rocks based on 18O/16O fractionation between coexisting serpentine and magnetite. Contrib Mineral Petrol 32:165–185

    Google Scholar 

  • Westall F (2004) Early life on earth: the fossil record. In: Ehrenfreund P et al. (eds), Astrobiology: future perspectives. Kluwer, Dordrecht, pp 287–316

    Google Scholar 

  • Westall F, de Witt MJ, Dann J, Van der Gaast S, de Ronde C, Gerneke R (2001) Early Archean fossil bacteria and biofilms in hydrothermally influenced sediments from the Barberton Greenstone Belt, South Africa. Precambrian Res 106: 93–116

    Google Scholar 

  • White HB (1976) Coenzymes as fossils of an earlier metabolic state. J Mol Evol 7:101–104

    Google Scholar 

  • Whitman W (1900) Leaves of grass. David McKay, Philadelphia

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Google Scholar 

  • Wicken JS (1988) Evolution, information and thermodynamics: extending the Darwinian program. Oxford University Press, New York

    Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Google Scholar 

  • Williams RJP, Frausto da Silva JJR (2003) Evolution was chemically constrained. J Theor Biol 220: 323–343

    Google Scholar 

  • Woese CR, Dugre DH, Saxinger WC, Dugre SA (1966) The molecular basis for the genetic code. Proc Natl Acad Sci USA 55:966–974

    Google Scholar 

  • Wolin MJ (1982) Hydrogen transfer in microbial communities. In: Bull AT, Slater JH (eds) Microbial interactions and communities. Academic Press, London

  • Wolthers M, Van der Gaast SJ, Rickard D (2003) The structure of disordered mackinawite. Am Mineral 88:2007–2015

    Google Scholar 

  • Wood BJ, Halliday AN (2005) Cooling of the Earth and core formation after the giant impact. Nature 437:1345–1348

    Google Scholar 

  • Yamagata Y, Wanatabe H, Saitoh M, Namba T (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352: 516–519

    Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer MJ, Pushkar Y, Biesiadka J, Loll B, Saenger W, Messinger J, Zouni A, Yachandra VK (2006) Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster. Science 314:821–825

    Google Scholar 

  • Yarus M (1988) A specific amino acid binding site composed of RNA. Science 240:1751–1758

    Google Scholar 

  • Yarus M (1989) Specificity of arginine binding by the Tetrahymena intron. J Mol Evol 28:980–988

    Google Scholar 

  • Yarus M (1998) Amino acids as RNA ligands: a direct-RNA-template theory for the code’s origin. J Mol Evol 47:109–117

    Google Scholar 

  • Yarus M (2000) RNA-ligand chemistry: a testable source for the genetic code. RNA 6:474–484

    Google Scholar 

  • Yarus M, Caporaso JG, Knight R (2005) Origins of the genetic code: the escaped triplet theory. Ann Rev Biochem 74:179–198

    Google Scholar 

  • Zhang B, Cech TR (1997) Peptide bond formation by in vitro selected ribozymes. Nature 390:96–100

    Google Scholar 

  • Zhang S, Holmes T, Lockshin C, Rich A (1993) Spontnaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc Natl Acad Sci USA 90:3334–3338

    Google Scholar 

  • Zhang Z, Satpathy S (1991) Electron states, magnetism, and the Verwey transition in magnetite. Phys Rev B 44:13319–13331

    Google Scholar 

  • Zou W, Ibrahem I, Dziedzic P, Sundén H, Córdova A (2005) Small peptides as modular catalysts for the direct asymmetric aldol reaction: ancient peptides with aldolase enzyme activity. Chem Commun 2005:4946–4948

Download references

Acknowledgements

I thank Allan Hall, John Allen, Ben Brunner, Rob Hengeveld, Isik Kanik, Axel Kleidon, James Milner-White, Andy Russell, David Schwartzman, Norman Sleep, Eric Smith, Anne Volbeda, and Larry Wade for help, support and discussions, although not all of the views expressed here may coincide with theirs. An anonymous referee also made helpful suggestions. The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Russell.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10441-007-9026-5

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, M.J. The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution. Acta Biotheor 55, 133–179 (2007). https://doi.org/10.1007/s10441-007-9018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-007-9018-5

Keywords

Navigation