Skip to main content
Log in

An Approach to Estimate Interface Shear Stress of Ceramic Matrix Composites from Hysteresis Loops

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

An approach to estimate interface shear stress of ceramic matrix composites during fatigue loading has been developed in this paper. By adopting a shear-lag model which includes the matrix shear deformation in the bonded region and friction in the debonded region, the matrix crack space and interface debonding length are obtained by matrix statistical cracking model and fracture mechanics interface debonding criterion. Based on the damage mechanisms of fiber sliding relative to matrix in the interface debonded region upon unloading and subsequent reloading, the unloading counter slip length and reloading new slip length are determined by the fracture mechanics method. The hysteresis loops of four different cases have been derived. The hysteresis loss energy for the strain energy lost per volume during corresponding cycle is formulated in terms of interface shear stress. By comparing the experimental hysteresis loss energy with computational values, the interface shear stress corresponding to different cycles can then be derived. The theoretical results have been compared with experimental data of three different ceramic composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig. 14

Similar content being viewed by others

References

  1. Naslain, R.: Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Compos. Sci. Technol. 64, 155–170 (2004). doi:10.1016/S0266-3538(03)00230-6

    Article  CAS  Google Scholar 

  2. Ji, F.S., Dharani, L.R.:Non-axisymmetric matrix cracking and interface debonding with friction in ceramic composites. Appl. Compos. Mater. 5, 379–397 (1998). doi:10.1023/A:1008820315282

    Article  Google Scholar 

  3. Curtin, W.A.: Stress-strain behavior of brittle matrix composites. Comprehensive composite materials, Elsevier Science Ltd. 4, 47–76 (2000). doi:10.1016/B0-08-042993-9/00088-7

  4. Rouby, D., Reynaud, P.: Fatigue behavior related to interface modification during load cycling in ceramic-matrix fiber composites. Comps. Sci. Technol. 48, 109–118 (1993). doi:10.1016/0266-3538(93)90126-2

    Article  CAS  Google Scholar 

  5. Chen, Y.H., Shi, Z.F.: An investigation of interfacial fatigue in fiber reinforced composites. Appl. Compos. Mater. 12, 265–276 (2005). doi:10.1007/s10443-004-4556-3

    Article  CAS  ADS  Google Scholar 

  6. Evans, A.G., Zok, F.W., McMeeking, R.M.: Fatigue of ceramic matrix composites. Acta Metall. Mater. 43, 859–875 (1995). doi:10.1016/0956-7151(94)00304-Z

    Article  CAS  Google Scholar 

  7. Zhu, S., Mizuno, M., Kagawa, Y.: Mutoh, Y.:Monotonic tension, fatigue and creep behavior of SiC-fiber-reinforced SiC-matrix composites: a review. Compos. Sci. Technol. 59, 833–851 (1999). doi:10.1016/S0266-3538(99)00014-7

    Article  Google Scholar 

  8. Brandstetter, J., Kromp, K., Peterlik, H., Weiss, R.: Effect of surface roughness on friction in fiber-bundle pull-out tests. Compos. Sci. Technol. 65, 981–988 (2005). doi:10.1016/j.compscitech.2004.11.004

    Article  CAS  Google Scholar 

  9. Kuntz, M., Grathwahl, G.: Advanced evaluation of push-in data for the assessment of fiber reinforced ceramic matrix composites. Adv. Eng. Mater. 3, 371–379 (2001). doi:10.1002/1527-2648(200106)3:6<371::AID-ADEM371>3.0.CO;2-Y

    Article  CAS  Google Scholar 

  10. Chandra, N., Ghonem, H.: Interfacial mechanics of push-out tests: theory and experiments. Composites-Part A. Appl. Sci. Manuf. 32, 575–584 (2001). doi:10.1016/S1359-835X(00)00051-8

    Article  Google Scholar 

  11. Reynaud, P.: Cyclic fatigue of ceramic-matrix composites at ambient and elevated temperatures. Compos. Sci. Technol. 56, 809–814 (1996). doi:10.1016/0266-3538(96)00025-5

    Article  CAS  Google Scholar 

  12. Mei, H., Cheng, L.F.: Comparison of the mechanical hysteresis of carbon/ceramic-matrix composites with different fiber performs. Carbon 47, 1034–42 (2009). doi:10.1016/j.carbon.2008.12.025

    Article  CAS  Google Scholar 

  13. Kotil, T., Holmes, J.W., Comninou, M.: Origin of hysteresis observed during fatigue of ceramic matrix composites. J. Am. Ceram. Soc. 73, 1879–1883 (1990). doi:10.1111/j.1151-2916.1990.tb05239.x

    Article  CAS  Google Scholar 

  14. Pryce, A.W., Smith, P.A.: Matrix cracking in unidirectional ceramic matrix composites under quasi-static and cyclic loading. Acta Metall mater. 41, 1269–1281 (1993). doi:10.1016/0956-7151(93)90178-U

    Article  CAS  Google Scholar 

  15. Keith, W.P., Kedward, K.T.: The stress-strain behavior of a porous unidirectional ceramic matrix composites. Compos. 26, 163–174 (1995). doi:10.1016/0010-4361(95)91379-J

    Article  CAS  Google Scholar 

  16. Ahn, B.K., Curtin, W.A.: Strain and hysteresis by stochastic matrix cracking in ceramic matrix composites. J. Mech. Phys. Solids. 45, 177–209 (1997). doi:10.1016/S0022-5096(96)00081-6

    Article  ADS  Google Scholar 

  17. Li, L.B., Song, Y.D., Sun, Z.G.: Influence of interface de-bonding on the fatigue hysteresis loops of ceramic matrix composites. Chinese. J. Solid. Mech. 30, 8–14 (2009)

    Google Scholar 

  18. Li, L.B., Song, Y.D., Sun, Z.G.: Effect of fiber Poisson contraction on fatigue hysteresis loops of ceramic matrix composites. J. Nanjing. Uni. Aero. Astron. 41, 181–6 (2009)

    CAS  Google Scholar 

  19. Yang, B., Mall, S.: Cohesive-shear-lag model for cycling stress-strain behavior of unidirectional ceramic matrix composites. Int. J. Damage. Mech. 12, 45–64 (2003). doi:10.1177/1056789503012001003

    Article  CAS  Google Scholar 

  20. Fantozzi, G., Reynaud, P.: Mechanical hysteresis in ceramic matrix composites. Mater. Sci. Eng-Part A. Struct. (2009). doi:10.1016/jmsea.2008.09.128

    Google Scholar 

  21. Solti, J. P., Robertson, D. D., Mall, S.: Estimation of interfacial properties from hysteretic energy loss in unidirectional ceramix matrix composites. Adv. Comp. Mater. 9, 161–173 (2000)

    Article  CAS  Google Scholar 

  22. Budiansky, B., Hutchinson, J.W., Evans, A.G.: Matrix fracture in fiber-reinforced ceramics. J. Mech. Phys. Solids. 34, 167–189 (1986). doi:0022-5096/86$3.00+0.00

    Article  MATH  ADS  Google Scholar 

  23. Curtin, W.A.: Multiple matrix cracking in brittle matrix composites. Acta Metall mater. 41, 1369–77 (1993). doi:10.1016/0956-7151(93)90246-O

    Article  CAS  Google Scholar 

  24. Solti, J.P., Mall, S., Robertson, D.D.: Modeling damage in unidirectional ceramic matrix composites. Compos. Sci. Technol. 54, 55–66 (1995). doi:10.1016/0266-3538(95)00041-0

    Article  Google Scholar 

  25. Gao, Y., Mai, Y., Cotterell, B.: Fracture of fiber-reinforced materials. J. Appl. Math. Phys. 39, 550–572 (1988). doi:10.1007/BF00948962

    Article  MATH  Google Scholar 

  26. Sun, Y.J., Singh, R.N.: The generation of multiple matrix cracking and fiber-matrix interfacial debonding in a glass composite. Acta Mater. 46, 1657–1667 (1998). doi:10.1016/S1359-6454(97)00347-9

    Article  CAS  Google Scholar 

  27. Aveston, J., Cooper, G.A., Kelly, A.: Single and multiple fracture. Properties of fiber composites: conference on proceedings, pp. 15–26. National Physical Laboratory, IPC, England (1971)

    Google Scholar 

  28. Beyerle, D.S., Spearing, S.M., Zok, F.W., Evans, A.G.: Damage and failure in unidirectional ceramic matrix composites. J. Am. Ceram. Soc. 75, 2719–25 (1992). doi:10.1111/j.1151-2916.1992.tb05495.x

    Article  CAS  Google Scholar 

  29. Holmes, J.W., Cho, C.: Experimental observations of frictional heating in fiber-reinforced ceramics. J. Am. Ceram. Soc. 75, 929–938 (1992). doi:10.1111/j.1151-2916.1992.tb04162.x

    Article  CAS  Google Scholar 

  30. Zawada, L.P., Butkus, L.M., Hartman, G.A.: Tensile and fatigue behavior of silicon carbide fiber-reinforced aluminosilicate glass. J. Am. Ceram. Soc. 74, 2851–2858 (1991). doi:10.1111/j.1151-2916.1991.tb06854.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Doctoral Innovation Foundation of Nanjing University of Aeronautics and Astronautics (No.BCXJ08-05), the Graduate Innovation Foundation of Jiangsu Province (No.CX08B-133Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbiao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Song, Y. An Approach to Estimate Interface Shear Stress of Ceramic Matrix Composites from Hysteresis Loops. Appl Compos Mater 17, 309–328 (2010). https://doi.org/10.1007/s10443-009-9122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-009-9122-6

Keywords

Navigation