Skip to main content
Log in

Effect of Piezoelectric Implant on the Structural Integrity of Composite Laminates Subjected to Tensile Loads

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

The embedment of sensors within composite structures gives the opportunity to develop smart materials for health and usage monitoring systems. This study investigates the use of acoustic emission monitoring with embedded piezoelectric sensor during mechanical tests in order to identify the effects of introducing the sensor into the composite materials. The composite specimen with and without embedded sensor were subject to tensile static and fatigue loading. The analysis and observation of AE signals show that the integration of a sensor presents advantage of the detection of the acoustic events and also show the presence of three or four types of damage during tests. The incorporation of piezoelectric sensor has a negligible influence on the mechanical properties of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Monnier T., Jayet Y., Guy P.: P, JC. Baboux, the piezoelectric implant method: implementation and practical applications. Smart Mater. Struct. 9, 267–272 (2000)

    Article  Google Scholar 

  2. Ihn J.B., Chang F.K.: Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: II. Validation using riveted joints and repair patches. Smart Mater. Struct. 13(621–630), (2004)

  3. Yang S.M., Hung C.C., Chen K.H.: Design and fabrication of a smart layer module in composite laminated structures. Smart Mater. Struct. 14, 315–320 (2005). doi:10.1088/0964-1726/14/2/003

    Article  Google Scholar 

  4. Lin M., Chang F.K.: The manufacture of composite structures with a built-in network of piezoceramics. Compos. Sci. Technol. 62, 919–939 (2002)

    Article  Google Scholar 

  5. Côté F., Masson P., Mrad N., Cotoni V.: Dynamic and static modelling of piezoelectric composite structures using a thermal analogy with MSC/NASTRAN. Comp Struct. 65, 471–484 (2004)

    Article  Google Scholar 

  6. Measures R.M.: Smart composite structures with embedded sensors. Compos. Eng. 2, 597–618 (1992)

    Article  Google Scholar 

  7. Mall S.: Integrity of graphite/epoxy laminate embedded with piezoelectric sensor/actuator under monotonic and fatigue loads. Smart Mater. Struct. 11, 527–533 (2002)

    Article  Google Scholar 

  8. Qing X.P., Beard S.J., Kumar A., Ooi T.K., Chang F.K.: Built-in sensor network for structural health monitoring of composite structure. J. Intell. Mater. Syst. Struct. 18, 39–49 (2007)

    Article  Google Scholar 

  9. Kim K.-S., Breslauer M., Springer G.: The effect of embedded sensors on the strength of composite laminates. J. Reinf. Plast. Compos. 11, 949–958 (1992)

    Article  Google Scholar 

  10. Shivakumar K., Emmanwori L.: Mechanics of failure of composite laminates with an embedded fiber optic sensor. J. Compos. Mater. 38(8), 669–680 (2004)

    Article  Google Scholar 

  11. Ye L., Lu Y., Su Z., Meng G.: Functionalized composite structures for new generation airframes: a review. Compos. Sci. Technol. 65, 1436–1446 (2005)

    Article  Google Scholar 

  12. E. F. Crawley and J. de Luis, Use of piezoelectric actuators as elements of intelligent structures. AIAA J. 25, 1373–1385 (1987)

  13. Bronowicki A.J., McIntyre L.J., Betros R.S., Dvorsky G.R.: Mechanical validation of smart structures. Smart Mater. Struct. 5, 129–139 (1996)

    Article  Google Scholar 

  14. Ghezzo F., Huang Y., Nemat-Nasser S.: Onset of resin micro-cracks in unidirectional glass fiber laminates with integrated SHM sensors: experimental results. Struct. Health Monit. 8(6), 477–491 (2009)

    Article  Google Scholar 

  15. Ghezzo F., Starr A.F., Smith D.R.: Integradtion of networks of sensors and electronics for structural health monitoring of composite materials. Adv in Civ Eng. 2010, 1–13 (2010)

    Article  Google Scholar 

  16. P. Gebski, L. Golaski and K. Ono, Acoustic emission monitoring of fatigue of glass-fiber wound pipes under biaxial loading, J. Acoustic Emission, 19 (2001)

  17. Wenger M.P., Bianas P., Shuford R.J., Das-Gupta D.K.: Characterization and evaluation of piezoelectric composite bimorphs for ln-situ acoustic emission sensors. Polym. Eng. Sci. 39(3), 508–518 (1999)

    Article  Google Scholar 

  18. El Guerjouma R., Baboux J.C., Ducret D., Godin N., Guy P., Huguet S., Jayet Y., Monnier T.: Non destructive evaluation of damage and failure of fiber reinforced polymer composites using ultrasonic waves and acoustic emission. Adv. Eng. Mater. 3, 601–608 (2001)

    Article  Google Scholar 

  19. Barré S., Benzeggagh M.L.: On the use of acoustic emission to investigate damage mechanisms in glass-fiber reinforced polypropylene". Compos. Sci. Technol. 52, 369–376 (1994)

    Article  Google Scholar 

  20. Godin N., Huguet S., Gaertner R.: Integration of the Kohonen’s self-organising map and k-means algorithm for the segmentation of the AE data collected during tensile tests on cross-ply composites". NDT&E Int. 38, 299–309 (2005)

    Article  Google Scholar 

  21. Moevus M., Godin N., R’Mili M., Rouby D., Reynaud P., Fantozzi G., Farizy G.: Analysis of damage mechanisms and associated acoustic emission in two SiCf/[Si–B–C] composites exhibiting different tensile behaviours. Part II: Unsupervised acoustic emission data clustering",. Compos. Sci. Technol. 68, 1258–1265 (2008)

    Article  Google Scholar 

  22. Marec A., Thomas J.H., El Guerjouma R.: Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech. Syst. Signal Process. 22, 1441–1464 (2008)

    Article  Google Scholar 

  23. Masmoudi S., El Mahi A., Turki S., El Guerjouma R.: Mechanical behaviour and health monitoring by Acoustic Emission of unidirectional and cross-ply laminates integrated by piezoelectric implant. Appl. Acoust. 86, 118–125 (2014)

    Article  Google Scholar 

  24. Masmoudi S., El Mahi A., Turki S.: Fatigue behaviour and structural health monitoring by acoustic emission of E-glass/epoxy laminates with piezoelectric implant. Appl. Acoust. 108, 50–58 (2016)

    Article  Google Scholar 

  25. Likas A., Vlassis N., Verbeek J.: The global k-means clustering algorithm. Pattern Recogn. 36, 451–461 (2003)

    Article  Google Scholar 

  26. NOESIS software, Advanced Acoustic Emission Data Analysis Pattern Recognition and Neural Networks Software (2004)

  27. Ferroperm Piezoceramics Catalogue (2003) http://www.ferroperm-piezo.com.

  28. Nielsen A.: Acoustic emission source based on pencil lead breaking. Dan Welding Inst Publ. 80, 15 (1980)

    Google Scholar 

  29. Davies D.L., Bouldin D.W.: A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell. 1, 224–227 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahir Masmoudi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, S., El Mahi, A. & Turki, S. Effect of Piezoelectric Implant on the Structural Integrity of Composite Laminates Subjected to Tensile Loads. Appl Compos Mater 24, 39–54 (2017). https://doi.org/10.1007/s10443-016-9513-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-016-9513-4

Keywords

Navigation