Skip to main content
Log in

Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Surface multiresolution processing is an important subject in CAGD. It also poses many challenging problems including the design of multiresolution algorithms. Unlike images which are in general sampled on a regular square or hexagonal lattice, the meshes in surfaces processing could have an arbitrary topology, namely, they consist of not only regular vertices but also extraordinary vertices, which requires the multiresolution algorithms have high symmetry. With the idea of lifting scheme, Bertram (Computing 72(1–2):29–39, 2004) introduces a novel triangle surface multiresolution algorithm which works for both regular and extraordinary vertices. This method is also successfully used to develop multiresolution algorithms for quad surface and \(\sqrt 3\) triangle surface processing in Wang et al. (Vis Comput 22(9–11):874–884, 2006; IEEE Trans Vis Comput Graph 13(5):914–925, 2007) respectively. When considering the biorthogonality, these papers do not use the conventional \(L^2({{\rm I}\kern-.2em{\rm R}}^2)\) inner product, and they do not consider the corresponding lowpass filter, highpass filters, scaling function and wavelets. Hence, some basic properties such as smoothness and approximation power of the scaling functions and wavelets for regular vertices are unclear. On the other hand, the symmetry of subdivision masks (namely, the lowpass filters of filter banks) for surface subdivision is well studied, while the symmetry of the highpass filters for surface processing is rarely considered in the literature. In this paper we introduce the notion of 4-fold symmetry for biorthogonal filter banks. We demonstrate that 4-fold symmetric filter banks result in multiresolution algorithms with the required symmetry for quad surface processing. In addition, we provide 4-fold symmetric biorthogonal FIR filter banks and construct the associated wavelets, with both the dyadic and \(\sqrt 2\) refinements. Furthermore, we show that some filter banks constructed in this paper result in very simple multiresolution decomposition and reconstruction algorithms as those in Bertram (Computing 72(1–2):29–39, 2004) and Wang et al. (Vis Comput 22(9–11):874–884, 2006; IEEE Trans Vis Comput Graph 13(5):914–925, 2007). Our method can provide the filter banks corresponding to the multiresolution algorithms in Wang et al. (Vis Comput 22(9–11):874–884, 2006) for dyadic multiresolution quad surface processing. Therefore, the properties of the scaling functions and wavelets corresponding to those algorithms can be obtained by analyzing the corresponding filter banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertram, M.: Biorthogonal loop-subdivision wavelets. Computing 72(1–2), 29–39 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Catmull, E., Clark, J.: Recursively generated B-spline surfaces on arbitrary topological meshes. Comput. Aided Des. 10(6), 350–355 (1978)

    Article  Google Scholar 

  3. Chui, C.K., Jiang Q.T.: Balanced multiwavelets in \({{\rm I}\kern-.2em{\rm R}}^s\). Math. Comput. 74(251), 1323–1344 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Chui, C.K., Jiang, Q.T.: Matrix-valued symmetric templates for interpolatory surface subdivisions, I: regular vertices. Appl. Comput. Harmon. Anal. 19(3), 303–339 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chui, C.K. Jiang, Q.T., Ndao, R.N.: Triangular \(\sqrt 7\) and quadrilateral \(\sqrt 5\) subdivision schemes: regular case. J. Math. Anal. Appl. 338(2), 1204–1223 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cohen, A., Daubechies, I.: A stability criterion for biorthogonal wavelet bases and their related subband coding scheme. Duke Math. J. 68(2), 313–335 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dahmen, W.: Decomposition of refinable spaces and applications to operator equations. Numer. Algorithms 5(5) 229–245 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Han, B.: Analysis and construction of optimal multivariate biorthogonal wavelets with compact support. SIAM J. Math. Anal. 31(2) 274–304 (1999/2000)

    Article  MATH  Google Scholar 

  9. Han, B.: Projectable multivariate refinable functions and biorthogonal wavelets. Appl. Comput. Harmon. Anal. 13 89–102 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Han, B.: Symmetry property and construction of wavelets with a general dilation matrix. Linear Algebra Appl. 353 207–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Han, B., Jia, R.Q.: Quincunx fundamental refinable functions and quincunx biorthogonal wavelets. Math. Comput. 71(237), 165–196 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Ivrissimtzis, I.P., Sabin, M.A., Dodgson, N.A.: \(\sqrt 5\)-subdivision. In: Advances in Multiresolution for Geometric Modelling, pp. 285–299. Springer, Berlin (2005)

    Chapter  Google Scholar 

  13. Jia, R.Q.: Approximation properties of multivariate wavelets. Math. Comput. 67(222) 647–665 (1998)

    Article  MATH  Google Scholar 

  14. Jia, R.Q.: Convergence of vector subdivision schemes and construction of biorthogonal multiple wavelets. In: Advances in Wavelets, pp. 199–227. Springer, Singapore (1999)

    Google Scholar 

  15. Jia, R.Q., Jiang, Q.T.: Spectral analysis of transition operators and its applications to smoothness analysis of wavelets. SIAM J. Matrix Anal. Appl. 24(4), 1071–1109 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jia, R.Q., Zhang, S.R.: Spectral properties of the transition operator associated to a multivariate refinement equation. Linear Algebra Appl. 292(1), 155–178 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jiang, Q.T.: Biorthogonal wavelets with 6-fold axial symmetry for hexagonal data and triangle surface multiresolution processing. University of Missouri-St. Louis (2009, preprint)

  18. Jiang, Q.T., Oswald, P.: Triangular \(\sqrt{3}\)-subdivision schemes: the regular case. J. Comput. Appl. Math. 156(1), 47–75 (2003)

    MATH  MathSciNet  Google Scholar 

  19. Jiang, Q.T., Oswald, P., Riemenschneider, S.D.: \(\sqrt{3}\)-subdivision schemes: maximal sum rules orders. Constr. Approx. 19(3), 437–463 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kobbelt, L.: \(\sqrt{3}\)-subdivision. In: SIGGRAPH Computer Graphics Proceedings, pp. 103–112 (2000)

  21. Kovačević, J., Vetterli, M.: Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for \({{\rm I}\kern-.2em{\rm R}}^n\). IEEE Trans. Inf. Theory 38(2), 533–555 (1992)

    Article  Google Scholar 

  22. Kovačević, J., Vetterli, M.: Nonseparable two- and three-dimensional wavelets. IEEE Trans. Signal Process 43(5), 1260–1273 (1995)

    Google Scholar 

  23. Labsik, U., Greiner, G.: Interpolatory \(\sqrt{3}\)-subdivision. Comput. Graph. Forum 19(3), 131–138 (2000)

    Article  Google Scholar 

  24. Li, G.Q., Ma, W.Y., Bao, H.J.: \(\sqrt 2\) subdivision for quadrilateral meshes. Vis. Comput. 20(2), 180–198 (2004)

    Article  Google Scholar 

  25. Lounsbery, J.M.: Multiresolution analysis for surfaces of arbitrary topological type. Ph.D. Dissertation, University of Washington, Department of Mathematics (1994)

  26. Lounsbery, J.M., Derose, T.D., Warren, J.: Multiresolution analysis for surfaces of arbitrary topological type. ACM Trans. Graph. 16(1), 34–73 (1997)

    Article  Google Scholar 

  27. Oswald, P.: Designing composite triangular subdivision schemes. Comput. Aided Geom. Des. 22(7), 659–679 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Oswald, P., Schröder, P.: Composite primal/dual \(\sqrt{3}\)-subdivision schemes. Comput. Aided Geom. Des. 20(3), 135–164 (2003)

    Article  MATH  Google Scholar 

  29. Samavati, F.F., Mahdavi-Amiri, N., Bartels, R.H.: Multiresolution representation of surface with arbitrary topology by reversing Doo subdivision. Comput. Graph. Forum, 21(2), 121–136 (2002)

    Article  Google Scholar 

  30. Zorin, D., Schröder, P., DeRose, A., Kobbelt, L., Levin, A., Sweldens, W.: Subdivision for Modeling and Animation. SIGGRAPH 2000 Course Notes

  31. Selesnick, I.W.: Multiwavelets with extra approximation properties. IEEE Trans. Signal Process 46(11), 2898–2909 (1998)

    Article  MathSciNet  Google Scholar 

  32. Sweldens, W.: The lifting scheme: a custom-design construction of biorthogonal wavelets. Appl. Comput. Harmon. Anal. 3(2), 186–200 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  33. Velho, L.: Quasi 4-8 subdivision. Comput. Aided Geom. Des. 18(4), 345–357 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  34. Velho, L., Zorin, D.: 4–8 subdivision. Comput. Aided Geom. Des. 18(5), 397–427 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  35. Wang, H.W., Qin, K.H., Tang, K.: Efficient wavelet construction with Catmull-Clark subdivision. Vis. Comput. 22(9–11), 874–884 (2006)

    Article  Google Scholar 

  36. Wang, H.W., Qin, K.H., Sun, H.Q.: \(\sqrt 3\)-subdivision-based biorthogonal wavelets. IEEE Trans. Vis. Comput. Graph. 13(5), 914–925 (2007)

    Article  Google Scholar 

  37. Warren, J., Weimer, H.: Subdivision Methods For Geometric Gesign: A Constructive Approach. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingtang Jiang.

Additional information

Communicated by R. Q. Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q. Biorthogonal wavelets with 4-fold axial symmetry for quadrilateral surface multiresolution processing. Adv Comput Math 34, 127–165 (2011). https://doi.org/10.1007/s10444-009-9144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-009-9144-5

Keywords

Mathematics Subject Classifications (2000)

Navigation