Skip to main content
Log in

A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal stress

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we present a fast multipole method (FMM) for the half-space Green’s function in a homogeneous elastic half-space subject to zero normal stress, for which an explicit solution was given by Mindlin (Physics 7, 195–202 1936). The image structure of this Green’s function is unbounded, so that standard outgoing representations are not easily available. We introduce two such representations here, one involving an expansion in plane waves and one involving a modified multipole expansion. Both play a role in the FMM implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaillat, S., Bonnet, M.: A new fast multipole formulation for the elastodynamic half-space Green’s tensor. J. Comput. Phys. 258, 787–808 (2014)

    Article  MathSciNet  Google Scholar 

  2. Chaillat, S., Bonnet, M., Semblat, J.-F.: A multi-level fast multipole BEM for 3-D elastodynamics in the frequency domain. Comput. Methods Appl. Mech. Engrg. 197, 4233–4249 (2008)

    Article  MATH  Google Scholar 

  3. Cheng, H., Greengard, L., Rokhlin, V.: A fast adaptive multipole algorithm in three dimensions. J. Comput. Phys. 155, 468–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chinnery, M.: The deformation of the ground around surface faults. Bull. Seism. Soc. Am. 51, 355–372 (1961)

    Google Scholar 

  5. Fong, W., Darve, E.: The black-box fast multipole method. J. Comput. Phys. 228, 8712–8725 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Frangi, A.: A fast multipole implementation of the qualocation mixed-velocity-traction approach for exterior Stokes flow. Eng. Anal. with Boundary Elements 29, 1039–1046 (2005)

    Article  MATH  Google Scholar 

  7. Fu, Y., Klimkowski, K.J., Rodin, G.J., Berger, E., Browne, J.C., Singer, J.K., van de Geijn, R.A., Vemaganti, K.S.: A fast solution method for three-dimensional many-particle problems of linear elasticity. Int. J. Numer. Meth. Eng. 42, 1215–1229 (1998)

    Article  MATH  Google Scholar 

  8. Fu, Y., Rodin, G.J.: Fast solution methods for three-dimensional Stokesian many-particle problems. Commun. Numer. Methods Eng. 16, 145–149 (2000)

    Article  MATH  Google Scholar 

  9. Gimbutas, Z., Greengard, L., Barall, M., Tullis, T.E.: On the Calculation of Displacement, Stress and Strain Induced by Triangular Dislocations. Bull. Seismol. Soc. Am. 102, 2776–2780 (2012)

    Article  Google Scholar 

  10. Greengard, L.: The Rapid Evaluation of Potential Fields in Particle Systems. MIT Press, Cambridge, Mass (1988)

    MATH  Google Scholar 

  11. Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the Laplace equation in three dimensions. Acta Numerica 6, 229–270 (1997)

    Article  MathSciNet  Google Scholar 

  12. Gumerov, N.A., Duraiswami, R.: Fast multipole method for the biharmonic equation in three dimensions. J. Comput. Phys. 215, 363–383 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kuriyama, K., Mizuta, Y.: Three-dimensional Elastic Analysis by the Displacement Discontinuity Method with Boundary Division into Triangular Leaf Elements. Int J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 111–123 (1993)

    Article  Google Scholar 

  14. Maruyama, T.: On the force equivalents of dynamical elastic dislocations with reference to the earthquake mechanism. Bull. Earthquake Res. Inst. 41, 467–486 (1963)

    Google Scholar 

  15. Meade, B.J.: Algorithms for the calculation of exact displacements, strains, and stresses for Triangular Dislocation Elements in a uniform elastic half space. Comput. Geosci. 33, 1064–1075 (2007)

    Article  Google Scholar 

  16. Mindlin, R.D.: Force at a point in the interior of a semi-infinite solid. Physics 7, 195–202 (1936)

    Article  MATH  Google Scholar 

  17. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  18. Okada, Y.: Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 82, 1018–1040 (1992)

    Google Scholar 

  19. Poulos, H.G., Davis, E.H.: Pile foundation analysis and design. Wiley, New York (1980)

    Google Scholar 

  20. Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  21. Tornberg, A.-K., Greengard, L.: A Fast Multipole Method for the Three Dimensional Stokes Equations. J. Comput. Phys. 227, 1613–1619 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tullis, T.E., Richards-Dinger, Barall, M., Dieterich, J.H., Field, E.H., Heien, E.M., Kellogg, L.H., Pollitz, F.F., Rundle, J.B., Sachs, M.K., Turcotte, D.L., Ward, S.N., Yikilmaz, M.B.: Generic earthquake simulator. Seismol. Res. Lett. 83, 959–963 (2012)

    Article  Google Scholar 

  23. Walker, K.P.: Fourier integral representation of the Green function for an anisotropic elastic half-space. Proc. R. Soc. Lond. A 443, 367–389 (1993)

    Article  MATH  Google Scholar 

  24. Wang, H., Lei, T., Huang, J., Yao, Z.: A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations. Int. J. Numer. Methods Eng. 70, 812–839 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, X., Kanapka, J., Ye, W., Aluru, N.R., White, J.: Algorithms in Fast Stokes and its application to micromachined device simulation. IEEE Trans. Comput. Aided Des. Integra. Circ. Syst. 25, 248–257 (2006)

    Article  Google Scholar 

  26. Wang, M.Z., Xu, B.X., Gao, C.F.: Recent general solutions in linear elasticity and their applications. Appl. Mech. Rev. 61, 030803 (2008)

    Article  Google Scholar 

  27. Wang, Y.H., LeSar, R.: O(N) algorithm for dislocation dynamics. Philos. Mag. A 71, 149–163 (1995)

    Article  Google Scholar 

  28. Yarvin, N., Rokhlin, V.: Generalized Gaussian quadratures and singular value decompositions of integral operators. SIAM J Sci. Comput. 20, 699–718 (1998)

    Article  MathSciNet  Google Scholar 

  29. Ying, L., Biros, G., Zorin, D.: A kernel independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196, 591–626 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yoshida, K., Nishimura, N., Kobayashi, S.: Application of a fast multipole Galerkin boundary integral method to elastostatic crack problems in 3D. Int. J. Numer. Methods Eng. 50, 525–547 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leslie Greengard.

Additional information

Communicated by: Silas Alben

Contributions by staff of NIST, an agency of the U.S. Government, are not subject to copyright within the United States.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gimbutas, Z., Greengard, L. A fast multipole method for the evaluation of elastostatic fields in a half-space with zero normal stress. Adv Comput Math 42, 175–198 (2016). https://doi.org/10.1007/s10444-015-9416-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-015-9416-1

Keywords

Mathematics Subject Classifications (2010)

Navigation