Skip to main content
Log in

A linear formulation for disk conformal parameterization of simply-connected open surfaces

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

Surface parameterization is widely used in computer graphics and geometry processing. It simplifies challenging tasks such as surface registrations, morphing, remeshing and texture mapping. In this paper, we present an efficient algorithm for computing the disk conformal parameterization of simply-connected open surfaces. A double covering technique is used to turn a simply-connected open surface into a genus-0 closed surface, and then a fast algorithm for parameterization of genus-0 closed surfaces can be applied. The symmetry of the double covered surface preserves the efficiency of the computation. A planar parameterization can then be obtained with the aid of a Möbius transformation and the stereographic projection. After that, a normalization step is applied to guarantee the circular boundary. Finally, we achieve a bijective disk conformal parameterization by a composition of quasi-conformal mappings. Experimental results demonstrate a significant improvement in the computational time by over 60%. At the same time, our proposed method retains comparable accuracy, bijectivity and robustness when compared with the state-of-the-art approaches. Applications to texture mapping are presented for illustrating the effectiveness of our proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S., Haker, S., Tannenbaum, A., Kikinis, R.: Conformal geometry and brain flattening. In: Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 271–278 (1999)

  2. Bates, P.W., Wei, G.W., Zhao, S.: Minimal molecular surfaces and their applications. J. Comput. Chem. 29(3), 380–391 (2008)

    Article  Google Scholar 

  3. Choi, P.T., Lam, K.C., Lui, L.M.: FLASH: Fast Landmark aligned spherical harmonic parameterization for genus-0 closed brain surfaces. SIAM J. Imag. Sci. 8 (1), 67–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Choi, P.T., Lui, L.M.: Fast disk conformal parameterization of simply-connected open surfaces. J. Sci. Comput. 65(3), 1065–1090 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21(3), 209–218 (2002)

    Article  Google Scholar 

  6. do Carmo, M.: Differential Geometry of Curves and Surfaces. Prentice Hall (1976)

  7. Feng, X., Xia, K., Tong, Y., Wei, G.W.: Geometric modeling of subcellular structures, organelles, and multiprotein complexes. Int. J. Numer. Methods Biomed. Eng. 28(12), 1198–1223 (2012)

    Article  MathSciNet  Google Scholar 

  8. Floater, M.: Parameterization and smooth approximation of surface triangulations. Comput. Aided Geom. Des. 14(3), 231–250 (1997)

    Article  MATH  Google Scholar 

  9. Floater, M.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Floater, M., Hormann, K.: Parameterization of triangulations and unorganized points. In: Tutorials on multiresolution in geometric modelling, pp. 287–316 (2002)

  11. Floater, M., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, oo. 157–186 (2005)

  12. Gardiner, F., Lakic, N: Quasiconformal Teichmüller Theory. American Mathematics Society (2000)

  13. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Trans. Graph. (Proc. ACM SIGGRAPH 2003) 22(3), 358–363 (2003)

    Article  Google Scholar 

  14. Gu, X., Yau, S.T.: Computing conformal structures of surfaces. Commun. Inf. Syst. 2(2), 121–146 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Gu, X., Yau, S.T.: Global conformal surface parameterization. In: Eurographics Symposium on Geometry Processing, pp. 127–137 (2003)

  16. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imag. 23(8), 949–958 (2004)

    Article  Google Scholar 

  17. Haker, S., Angenent, S., Tannenbaum, A., Kikinis, R., Sapiro, G.: Conformal surface parameterization for texture mapping. IEEE Trans. Vis. Comput. Graph. 6(2), 181–189 (2000)

    Article  Google Scholar 

  18. Hormann, K., Greiner, G.: MIPS: An efficient global parametrization method. Curve Surf. Des. 153–162 (2000)

  19. Hormann, K., Labsik, U., Greiner, G.: Remeshing triangulated surfaces with optimal parameterizations. Comput. Aided Des. 33(11), 779–788 (2001)

    Article  MATH  Google Scholar 

  20. Hormann, K., Lévy, B., Sheffer, A.: Mesh parameterization: Theory and practice. SIGGRAPH 2007 Course Notes 2, 1–122 (2007)

    Google Scholar 

  21. Jin, M., Wang, Y., Gu, X., Yau, S.T.: Optimal global conformal surface parameterization for visualization. Commun. Inf. Syst. 4(2), 117–134 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  23. Jost, J.: Riemannian Geometry and Geometric Analysis. Universitext, Springer (2011)

  24. Kharevych, L., Springborn, B., Schröder, P.: Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25(2), 412–438 (2006)

    Article  Google Scholar 

  25. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. (Proc. ACM SIGGRAPH 2002) 21(3), 362–371 (2002)

    Google Scholar 

  26. Wang, Y., Lui, L.M., Chan, T.F., Thompson, P.M.: Optimization of Brain Conformal Mapping with Landmarks, Medical Image Computing and Computer Assisted Intervention(MICCAI), Part II, pp. 675–683 (2005)

  27. Wang, Y., Lui, L.M., Gu, X., Hayashi, K.M., Chan, T.F., Thompson, P.M., Yau, S. -T.: Brain surface conformal parameterization using Riemann surface structure. IEEE Trans. Med. Imag. 26(6), 513–538 (2007)

    Article  Google Scholar 

  28. Wang, Y., Lui, L.M., Chan, T.F., Thompson, P.M.: Landmark constrained genus zero surface conformal mapping and its application to brain mapping research. Appl. Numer. Math. 57, 847–858 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lui, L.M., Wong, T.W., Zeng, W., Gu, X.F., Thompson, P.M., Chan, T.F., Yau, S.T.: Optimization of surface registrations using Beltrami holomorphic flow. J. Sci. Comput. 50(3), 557–585 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lui, L.M., Gu, X., Chan, T.F., Yau, S.-T.: Variational method on Riemann surfaces using conformal parameterization and its applications to image processing. J. Methods Appl. Anal. 15(4), 513–538 (2008)

    MathSciNet  MATH  Google Scholar 

  31. Lui, L.M., Thiruvenkadam, S., Wang, Y., Thompson, P., Chan, T.F.: Optimized conformal surface registration with shape-based landmark matching. SIAM J. Imag. Sci. 3(1), 52–78 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lui, L.M., Wong, T.W., Gu, X.F., Thompson, P.M., Chan, T.F., Yau, S.T.: Shape-based diffeomorphic registration on hippocampal surfaces using Beltrami holomorphic flow. Medical Image Computing and Computer Assisted Intervention(MICCAI), Part II, LNCS 6362, pp. 323-330 (2010)

  33. Lui, L.M., Lam, K.C., Wong, T.W., Gu, X.: Texture map and video compression using beltrami representation. SIAM J. Imag. Sci. 6(4), 1880–1902 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lui, L.M., Zeng, W., Yau, S.T., Gu, X.F.: Shape analysis of planar multiply-connected objects using conformal welding. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1384–1401 (2013)

    Google Scholar 

  35. Lai, R., Wen, Z., Yin, W., Gu, X.F., Lui, L.M.: Folding-Free global conformal mapping for genus-0 surfaces by harmonic energy minimization. J. Sci. Comput. 58(3), 705–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lam, K.C., Lui, L.M.: Landmark and intensity based registration with large deformations via quasi-conformal maps. SIAM J. Imag. Sci. 7(4), 2364–2392 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wen, C.F., Lui, L.M.: Geometric registration of high-genus surfaces. SIAM J. Imag. Sci. 7(1), 337V365 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Ng, T.C., Lui, L.M.: A splitting method for diffeomorphism optimization problem using Beltrami coefficients. J. Sci. Comput 63(2), 573–611 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Luo, F.: Combinatorial yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mullen, P., Tong, Y., Alliez, P., Desbrun, M.: Spectral conformal parameterization. Comput. Graph. Forum 27(5), 1487–1494 (2008)

    Article  Google Scholar 

  41. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math. 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Praun, E., Hoppe, H.: Spherical parametrization and remeshing. ACM Trans. Graph. (Proc. ACM SIGGRAPH 2003) 22(3), 340–349 (2003)

    Article  Google Scholar 

  43. Remacle, J.-F., Geuzaine, C., Compère, G., Marchandise, E.: High quality surface remeshing using harmonic maps. Int. J. Numer. Methods Eng. 83(4), 403–425 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Schoen, R., Yau, S.T.: Lectures on Differential Geometry. International Press (1994)

  45. Schoen, R., Yau, S.: Lectures on Harmonic Maps. International Press (1997)

  46. Sharon, E., Mumford, D.: 2D-shape analysis using conformal mapping. Int. J. Comput. Vis. 70(1), 55–75 (2006)

    Article  Google Scholar 

  47. Sheffer, A., de Sturler, E.: Surface parameterization for meshing by triangulation flattening. In: Proceedings of 9th International Meshing Roundtable, pp. 161–172 (2000)

  48. Sheffer, A., Lévy, B., Mogilnitsky, M., Bogomyakov, A.: ABF++: Fast And robust angle based flattening. ACM Trans. Graph. 24(2), 311–330 (2005)

    Article  Google Scholar 

  49. Sheffer, A., Praun, E., Rose, K.: Mesh parameterization methods and their applications. Found. Trends Comput. Graph. Vis. 2(2), 105–171 (2006)

    Article  MATH  Google Scholar 

  50. Yang, Y.L., Guo, R., Luo, F., Hu, S.M., Gu, X.F.: Generalized discrete Ricci flow. Comput. Graph. Forum 28(7), 2005–2014 (2009)

    Article  Google Scholar 

  51. Zhang, E., Mischaikow, K., Turk, G.: Feature-based surface parameterization and texture mapping. ACM Trans. Graph. 24(1), 1–27 (2005)

    Article  Google Scholar 

  52. AIM@SHAPE Shape Repository. http://shapes.aim-at-shape.net/

  53. Stanford 3D Scanning Repository. http://graphics.stanford.edu/data/3Dscanrep/

  54. A Benchmark for 3D Mesh Segmentation. http://segeval.cs.princeton.edu/

  55. RiemannMapper: A Mesh Parameterization Toolkit. http://www3.cs.stonybrook.edu/∼gu/software/RiemannMapper/

Download references

Acknowledgment

Lok Ming Lui is supported by RGC GRF (Project ID: 404612).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Ming Lui.

Additional information

Communicated by: Yang Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, G.PT., Lui, L.M. A linear formulation for disk conformal parameterization of simply-connected open surfaces. Adv Comput Math 44, 87–114 (2018). https://doi.org/10.1007/s10444-017-9536-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10444-017-9536-x

Keywords

Mathematics Subject Classification (2010)

Navigation