Skip to main content
Log in

Temperature Effect on Adsorption/Desorption Isotherms for a Simple Fluid Confined within Various Nanopores

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

We report a Grand Canonical Monte Carlo study of the temperature dependence of adsorption/desorption hysteresis for porous matrices having different morphologies and topologies. We aim at gaining some insights on the concept of critical hysteresis temperature, T cc , defined as the temperature at which the hysteresis loop disappears. Simulated T cc for cylindrical, ellipsoidal, and constricted pores follow the experimental scaling law established for MCM-41 silica materials. In contrast, T cc for Vycor samples with a largest pore size ~2.5 nm and 5.0 nm obey a different relationship, in qualitative agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brovchenko, I., A., Geiger, and A. Oleinikova, “Water in Nanopores. I. Coexistence Curves From Gibbs Ensemble Monte Carlo Simulations” J. Chem. Phys., 120, 1958–1972 (2004).

    Article  PubMed  Google Scholar 

  • Coasne, B., “Adsorption et Condensation de Fluides Simples dans le Silicium Mèsoporeux:Une Approche Expèrimentale et par Simulation Monte Carlo” Ph.D. Thesis, University, Paris 7, France, 2003.

  • Coasne, B., K.E., Gubbins, and R.J.-M. Pellenq, “A Grand Canonical Monte Carlo Study of Adsorption and Capillary Phenomena in Nanopores of Various Morphologies and Topologies:Testing the BET and BJH Characterization Methods” Part. Part. Char. Syst., 21, 149–160 (2004).

    Article  Google Scholar 

  • Coasne, B. and R.J.-M., Pellenq, “Grand Canonical Monte Carlo Simulation of Argon Adsorption at the Surface of Silica Nanopores:Effect of Pore Size, Pore Morphology, and Surface Roughness” J. Chem. Phys., 120, 2913–2922 (2004a).

    Article  Google Scholar 

  • Coasne, B. and R.J.-M., Pellenq, “A Grand Canonical Monte Carlo Study of Capillary Condensation in Mesoporous Media:Effect of the Pore Morphology and Topology” J. Chem. Phys., 121, 3767–3774 (2004b).

    Article  Google Scholar 

  • Detcheverry, F. et al., “Hysteresis in Capillary Condensation of Gases in Disordered Porous Solids” Physica B, 343, 303–307 (2004).

    Google Scholar 

  • Evans, R., “Fluids Adsorbed in Narrow Pores:Phase Equilibria and Structure” J. Phys.:Condens. Matter., 2, 8989–9007(1990).

    Article  Google Scholar 

  • Frenkel, D. and B. Smit, Understanding Molecular Simulation, 2nd ed., New York, Academic, New York, 2002.

    Google Scholar 

  • Gelb, L.D., “The Ins and Outs of Capillary Condensation in Cylindrical Pores” Mol. Phys., 100, 2049–2057 (2002).

    Article  Google Scholar 

  • Gelb, L.D. and K.E., Gubbins, “Pore Size Distribution in Porous Glasses:A Computer Simulation Study” Langmuir, 15, 305–308 (1999).

    Article  Google Scholar 

  • Gelb, L.D. and K.E., Gubbins, “Molecular Simulation of Capillary Phenomena in Controlled Pore Glasses” Fundamentals of Adsorption 7, 333–340 (2002).

    Google Scholar 

  • Gelb, L.D., K.E. Gubbins, R. Radhakrishnan, and M. Sliwinska-Bartkowiak, “Phase Separation in Confined Systems” Rev. Prog. Phys., 62, 1573–1659 (1999).

    Article  Google Scholar 

  • Kierlik, E., P.A. Monson, M.L. Rosinberg, L. Sarkisov, and G. Tarjus, “Capillary Condensation in Disordered Porous Materials:Hysteresis versus Equilibrium Behavior” Phys. Rev. Lett., 87, 055701 (2001).

    Article  PubMed  Google Scholar 

  • Kofke, D.A., “Direct Evaluation of Phase Coexistence by Molecular Simulation via Integration Along the Saturation Line” J. Chem. Phys., 98, 4149–4162 (1993).

    Article  Google Scholar 

  • Morishige, K., H., Fujii, M. Uga, and D. Kinukawa, “Capillary Critical Point of Argon, Nitrogen, Oxygen, Ethylene and Carbon Dioxide in MCM-41” Langmuir, 13, 3494–3498 (1997).

    Article  Google Scholar 

  • Neimark, A.V., P.I., Ravikovitch, and A. Vishnyakov, “Bridging Scales From Molecular Simulations to Classical Thermodynamics:Density Functional Theory of Capillary Condensation in Nanopores” J. Phys.:Condens. Matter, 15, 347–365 (2003).

    Article  Google Scholar 

  • Pellenq, R.J.-M. and P.E., Levitz, “Capillary Condensation in a Disordered Mesoporous Medium:A Grand Canonical Monte Carlo Study” Mol. Phys., 100, 2059–2077 (2002).

    Article  Google Scholar 

  • Pellenq, R.J.-M. and D., Nicholson, “Intermolecular Potential Function for the Physical Adsorption of Rare Gases in Zeolite” J. Phys. Chem., 98, 13339–13349 (1994).

    Article  Google Scholar 

  • Pellenq, R.J.-M., B., Rousseau, and P.E. Levitz, “A Grand Canonical Monte Carlo Study of Argon Adsorption/Condensation in Mesoporous Silica Glasses” Phys. Chem. Chem. Phys., 3, 1207–1212 (2001).

    Article  Google Scholar 

  • Puibasset, J. and R.J.-M., Pellenq, “Grand Canonical Monte Carlo Study of Water Structure on Hydrophilic Mesoporous and Plane Silica Substrates” J. Chem. Phys., 119, 9226–9232 (2003).

    Article  Google Scholar 

  • Woo, H.J., L. Sarkisov, and P.A. Monson, “Mean Field Theory of Fluid Adsorption in a Porous Glass” Langmuir, 17, 7472–7475 (2001).

    Article  Google Scholar 

  • Woo, H.J. and Monson P.A., “Phase Behavior and Dynamics of Fluids in Mesoporous Glasses” Phys. Rev. E, 67, 041207, 1–17 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland J.-M. Pellenq.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coasne, B., Gubbins, K.E. & Pellenq, R.JM. Temperature Effect on Adsorption/Desorption Isotherms for a Simple Fluid Confined within Various Nanopores. Adsorption 11 (Suppl 1), 289–294 (2005). https://doi.org/10.1007/s10450-005-5939-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-005-5939-y

Keywords

Navigation