Skip to main content

Advertisement

Log in

Investigation of hydrogen and methane adsorption/separation on silicon nanotubes: a hierarchical multiscale method from quantum mechanics to molecular simulation

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

A combination of ab initio quantum mechanical (QM) calculations and canonical Monte Carlo (CMC) simulations are employed to investigate possible usage of single-walled silicon nanotubes (SWSiNTs) as a novel media for hydrogen and methane adsorption as well as their separation from each other. By fitting the force field, a Morse potential model is selected as an efficient potential to describe the binding energies between both hydrogen-SiNTs and methane-SiNTs obtained from ab initio calculations. Then CMC simulations are performed to evaluate the adsorption and separation behaviors of H2 and CH4 on the three different sizes of SiNTs including (5, 5), (7, 7), and (9, 9) SiNTs at ambient temperatures and pressures from 1 up to 10 MPa. As a comparison, the adsorption and separation of H2 and CH4 on the (8, 8) CNTs which are isodiameter with (5, 5) SiNTs are also simulated. Results are indicative of remarkable enhancement of H2 and CH4 adsorption capacity on the SiNTs compared to the CNTs, which arise from stronger van der Waals (VDW) attractions. In the case of methane adsorption on SiNTs, the stored volumetric energy exceeds the goal of the US Freedom CAR Partnership by 2010, which can not be achieved by methane compression at such low pressures. Moreover, simulation results indicate that SiNTs preferentially adsorb methane relative to hydrogen in their equimolar mixture, which results in efficient separation of these gases from each other at 293 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekyarova, E., Murata, K., Yudasaka, M., Kasuya, D., Iijima, S., Tanaka, H., Kahoh, H., Kaneko, K.: Single-wall nanostructured carbon for methane storage. J. Phys. Chem. B 107, 4681–4684 (2003)

    Article  CAS  Google Scholar 

  • Bhatia, S.K., Myers, A.L.: Optimum conditions for adsorptive storage. Langmuir 22, 1688–1700 (2006)

    Article  CAS  Google Scholar 

  • Cao, D., Wang, W., Duan, X.: Grand canonical Monte Carlo simulation for determination of optimum parameters for adsorption of supercritical methane in pillared layered pores. J. Colloid Interface Sci. 254, 1–7 (2002)

    Article  CAS  Google Scholar 

  • Cao, D., Zhang, X., Chen, J., Wang, W., Yun, J.: Optimization of single-walled carbon nanotube arrays for methane storage at room temperature. J. Phys. Chem. B 107, 13286–13292 (2003)

    Article  CAS  Google Scholar 

  • Chen, H., Sholl, D.S.: Predictions of selectivity and flux for CH4/H2 separations using single walled carbon nanotubes as membranes. J. Membr. Sci. 269, 152–160 (2006)

    Article  CAS  Google Scholar 

  • Chen, Y.W., Tang, Y.H., Pei, L.Z., Guo, C.: Self-assembled silicon nanotubes grown from silicon monoxide. Adv. Mater. 17, 564–567 (2005)

    Article  Google Scholar 

  • Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M.: Porous, crystalline, covalent organic framework. Science 310, 1166–1170 (2005)

    Article  CAS  Google Scholar 

  • Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997)

    Article  CAS  Google Scholar 

  • Estela-Uribe, J.F., Jaramillo, J., Salazar, M.A., Trusler, J.P.M.: Virial equation of state for natural gas systems. Fluid Phase Equilib. 204, 169–182 (2003)

    Article  CAS  Google Scholar 

  • Gu, C., Gao, G.-H., Yu, Y.-X., Nitta, T.: Simulation for separation of hydrogen and carbon monoxide by adsorption on single-walled carbon nanotubes. Fluid Phase Equilib. 194–197, 297–307 (2002)

    Article  Google Scholar 

  • Heyden, A., Düren, T., Keil, J.F.: Study of molecular shape and non-ideality effects on mixture adsorption isotherms of small molecules in carbon nanotubes: a grand canonical Monte Carlo simulation study. Chem. Eng. Sci. 57, 2439–2448 (2002)

    Article  CAS  Google Scholar 

  • Huang, L., Zhang, L., Shao, Q., Lu, L., Lu, X., Jiang, S., Shen, W.: Simulations of binary mixture adsorption of carbon dioxide and methane in carbon nanotubes: temperature, pressure, and pore size effects. J. Phys. Chem. C 111, 11912–11920 (2007)

    Article  CAS  Google Scholar 

  • Kleiner, A., Eggert, S.: Curvature, hybridization, and STM images of carbon nanotubes. Phys. Rev. B 64, 113402 (2001)

    Article  Google Scholar 

  • Kowalczyk, P., Solarz, L., Do, D.D., Samborski, A., MacElroy, J.M.D.: Nanoscale tubular vessels for storage of methane at ambient temperatures. Langmuir 22, 9035–9040 (2006)

    Article  CAS  Google Scholar 

  • Kowalczyk, P., Brualla, L., Zywociński, A., Bhatia, S.K.: Single-walled carbon nanotubes: efficient nanomaterials for separation and on-board vehicle storage of hydrogen and methane mixture at room temperature? J. Phys. Chem. C 111, 5250–5257 (2007)

    Article  CAS  Google Scholar 

  • Lan, J., Cheng, D., Cao, D., Wang, W.: Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to grand canonical Monte Carlo simulations. J. Phys. Chem. C 112, 5598–5604 (2008)

    Article  CAS  Google Scholar 

  • Lee, J.-W., Kang, H.-C., Shim, W.-G., Kim, C., Moon, H.: Methane adsorption on multi-walled carbon nanotube at (303.15, 313.15, and 323.15) K. J. Chem. Eng. Data 51, 963–967 (2006)

    Article  CAS  Google Scholar 

  • Li, Y., Yang, R.T.: Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2005)

    Article  Google Scholar 

  • Li, Y., Yang, R.T.: Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006)

    Article  CAS  Google Scholar 

  • Lithoxoos, G.P., Samios, J., Carissan, Y.: Investigation of silicon model nanotubes as potential candidate nanomaterials for efficient hydrogen storage: a combined ab initio/grand Canonical Monte Carlo simulation study. J. Phys. Chem. C 112, 16725–16728 (2008)

    Article  CAS  Google Scholar 

  • Meng, T.D., Wang, C.-Y., Wang, S.-Y.: First-principles study of a single Ti atom adsorbed on silicon carbide nanotubes and the corresponding adsorption of hydrogen molecules to the Ti atom. Chem. Phys. Lett. 437, 224–228 (2007)

    Article  CAS  Google Scholar 

  • Morales-Cas, A.M., Moya, C., Coto, B., Vega, L.F., Calleja, G.: Adsorption of hydrogen and methane mixtures on carbon cylindrical cavities. J. Phys. Chem. C 111, 6473–6480 (2007)

    Article  CAS  Google Scholar 

  • Mpourmpakis, G., Froudakis, G.E., Lithoxoos, G.P., Samios, J.: SiC nanotubes: a novel material for hydrogen storage. Nano Lett. 6, 1581–1583 (2006)

    Article  CAS  Google Scholar 

  • Ohkubo, T., Miyawaki, J., Kaneko, K., Ryoo, R., Seaton, N.A.: Adsorption properties of templated mesoporous carbon (CMK-1) for nitrogen and supercritical methane experiment and GCMC simulation. J. Phys. Chem. B 106, 6523–6528 (2002)

    Article  CAS  Google Scholar 

  • Peng, X., Cao, D., Wang, W.: Heterogeneity characterization of ordered mesoporous carbon adsorbent CMK-1 for methane and hydrogen storage: GCMC simulation and comparison with experiment. J. Phys. Chem. C 112, 13024–13036 (2008)

    Article  CAS  Google Scholar 

  • Poirier, E., Chahine, R., Benard, P., Lafi, L., Dorval-Douville, G., Chandonia, P.A.: Hydrogen adsorption measurements and modeling on metal-organic frameworks and single-walled carbon nanotubes. Langmuir 22, 8784–8789 (2006)

    Article  CAS  Google Scholar 

  • Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., O’Keeffe, M., Yaghi, O.M.: Hydrogen storage in microporous metal-organic frameworks. Science 300, 1127–1129 (2003)

    Article  CAS  Google Scholar 

  • Roussel, T., Pellenq, R.J.M., Bienfait, M., Vix-Guterl, C., Gadiou, R., Beguin, F., Johnson, M.: Thermodynamic and neutron scattering study of hydrogen adsorption in two mesoporous ordered carbons. Langmuir 22, 4614–4619 (2006)

    Article  CAS  Google Scholar 

  • Ryou, J., Hong, S., Kim, G.: Hydrogen adsorption on hexagonal silicon nanotubes. Solid State Commun. 148, 469–471 (2008)

    Article  CAS  Google Scholar 

  • Sha, J., Niu, J., Ma, X., Xu, J., Zhang, X., Yang, Q., Yang, D.: Silicon nanotubes. Adv. Mater. 14, 1219–1221 (2002)

    Article  CAS  Google Scholar 

  • Tanaka, H., Kanoh, H., Yudasaka, M., Iijima, S., Kaneko, K.: Quantum effects on hydrogen isotope adsorption on single-wall carbon nanohorns. J. Am. Chem. Soc. 127, 7511–7516 (2005)

    Article  CAS  Google Scholar 

  • Tang, Y.H., Pei, L.Z., Chen, Y.W., Guo, C.: Self-assembled silicon nanotubes under supercritically hydrothermal conditions. Phys. Rev. Lett. 95, 116102 (2005)

    Article  CAS  Google Scholar 

  • Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J.: Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003)

    Article  CAS  Google Scholar 

  • Zhang, Y.: Computational study of the transport mechanisms of molecules and ions in solid materials. Dissertation, Texas A&M University, Texas, USA (2006)

  • Zhou, L., Sun, Y., Yang, Z., Zhou, Y.: Hydrogen and methane sorption in dry and water-loaded multiwall carbon nanotubes. J. Colloid Interface Sci. 289, 347–351 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Majid Hashemianzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balilehvand, S., Hashemianzadeh, S.M., Razavi, S. et al. Investigation of hydrogen and methane adsorption/separation on silicon nanotubes: a hierarchical multiscale method from quantum mechanics to molecular simulation. Adsorption 18, 13–22 (2012). https://doi.org/10.1007/s10450-011-9375-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-011-9375-x

Keywords

Navigation