Skip to main content
Log in

Effect of CO2 activation of carbon xerogels on the adsorption of methylene blue

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

The effect of physical activation with CO2 of carbon xerogels, synthesized by pyrolysis of a resorcinol-formaldehyde aqueous gel, on the adsorption capacities of Methylene Blue (MB) was studied. The activation with CO2 lead to carbon materials with micropore volumes ranging from \(0.28\ \mathrm{to}\ 0.98~\mathrm{cm}^{3}\,\mathrm{g}_{\mathrm{C}}^{-1}\). MB-adsorption isotherm studies showed that the increase of micropore volume and corresponding surface area led to: (i) a significant improvement in the capacity of MB-adsorption at monolayer coverage, from \(212\ \mathrm{to}\ 714~\mathrm{mg}\,\mathrm{g}_{\mathrm{C}}^{-1}\), and (ii) an increase of the binding energy related to Langmuir isotherm constant up to 45 times greater than those of commercial microporous activated carbons used as reference (NORIT R2030, CALGON BPL and CALGON NC35). It is proposed that the increase of the binding energy results from chemical cleaning of the O-groups onto carbon surface as a consequence of CO2-activation, increasing the ππ interaction between MB and graphene layers of the carbon xerogels. Finally, a series of batch kinetics were performed to investigate the effect of CO2-activation conditions on the mechanism of MB-adsorption. Experimental data were fitted using pseudo-first-order, pseudo-second-order and intraparticle diffusion kinetic models. From pseudo-second-order kinetic model, one observes an increase in the initial rate of MB-adsorption from 0.019 to 0.0565 min−1, by increasing the specific surface area from \(630\ \mathrm{to}\ 2180~\mathrm{m}^{2}\,\mathrm{g}_{\mathrm{C}}^{-1}\) via CO2-activation. Depending on the activation degree of the carbons, two different mechanisms control the MB-adsorption rate: (i) at low activation degree, the intraparticle diffusion is the rate-limiting phenomenon, whereas (ii) at high activation degree, the reactions occurring at the solid/liquid interface are the rate-limiting steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allen, S.J., McKay, G., Porter, J.F.: J. Colloid Interface Sci. 280, 322–333 (2004)

    Article  CAS  Google Scholar 

  • Benadjemia, M., Millière, L., Reinert, L., Benderdouche, N., Duclaux, L.: Fuel Process. Technol. 92, 1203–1212 (2011)

    Article  CAS  Google Scholar 

  • Contreras, M.S., Páez, C.A., Zubizarreta, L., Léonard, A., Blacher, S., Olivera-Fuentes, C.G., Arenillas, A., Pirard, J.-P., Job, N.: Carbon 48, 3157–3168 (2010)

    Article  CAS  Google Scholar 

  • El Qada, E.N., Allen, S.J., Walker, G.M.: Chem. Eng. J. 135, 174–184 (2008)

    Article  Google Scholar 

  • Elisangela, F., Andrea, Z., Fabio, D.G., de Menezes Cristiano, R., Regina, D.L., Artur, C.-P.: Int. Biodeterior. Biodegrad. 63, 280–288 (2009)

    Article  CAS  Google Scholar 

  • Figueiredo, J.L., Pereira, M.F.R., Freitas, M.M.A., Órfão, J.J.M.: Carbon 37, 1379–1389 (1999)

    Article  CAS  Google Scholar 

  • Freundlich, H.: Z. Phys. Chem. 57, 86 (1906)

    Google Scholar 

  • Giles, C.H., MacEwan, T.H., Nakhwa, S.N., Smith, D.: Journal of the Chemical Society (Resumed) (1960) 3973–3993

  • Giles, C.H., D’Silva, A.P., Easton, I.A.: J. Colloid Interface Sci. 47, 766–778 (1974)

    Article  CAS  Google Scholar 

  • Girgis, B.S., Attia, A.A., Fathy, N.A.: Desalination 265, 169–176 (2011)

    Article  CAS  Google Scholar 

  • Gommes, C.J., Job, N., Pirard, J.-P., Blacher, S., Goderis, B.: J. Appl. Crystallogr. 41, 663–668 (2008)

    Article  CAS  Google Scholar 

  • Granados-O., G., Páez-M., C.A., Martínez-O., F., Páez-Mozo, E.A.: Catal. Today 107–108, 589–594 (2005)

    Article  Google Scholar 

  • Hahner, G., Marti, A., Spencer, N.D., Caseri, W.R.: J. Chem. Phys. 104, 7749–7757 (1996)

    Article  Google Scholar 

  • Hamdaoui, O.: J. Hazard. Mater. 135, 264–273 (2006)

    Article  CAS  Google Scholar 

  • Ho, Y.-S.: J. Hazard. Mater. 136, 681–689 (2006)

    Article  CAS  Google Scholar 

  • Ho, Y.S., McKay, G.: Water Res. 34, 735–742 (2000)

    Article  CAS  Google Scholar 

  • Ip, A.W.M., Barford, J.P., McKay, G.: Chem. Eng. J. 157, 434–442 (2010)

    Article  CAS  Google Scholar 

  • Jin, X.-C., Liu, G.-Q., Xu, Z.-H., Tao, W.-Y.: Appl. Microbiol. Biotechnol. 74, 239–243 (2007)

    Article  CAS  Google Scholar 

  • Job, N., Heinrichs, B., Lambert, S., Pirard, J.-P., Colomer, J.-F., Vertruyen, B., Marien, J.: AIChE J. 52, 2663–2676 (2006)

    Article  CAS  Google Scholar 

  • Job, N., Pirard, R., Marien, J., Pirard, J.-P.: Carbon 42, 619–628 (2004)

    Article  CAS  Google Scholar 

  • Kannan, N., Sundaram, M.M.: Dyes Pigm. 51, 25–40 (2001)

    Article  CAS  Google Scholar 

  • Karaca, S., Gürses, A., AçIkyIldIz, M., Ejder, M.: Microporous Mesoporous Mater. 115, 376–382 (2008)

    Article  CAS  Google Scholar 

  • Kumar, K.V., Ramamurthi, V., Sivanesan, S.: J. Colloid Interface Sci. 284, 14–21 (2005)

    Article  CAS  Google Scholar 

  • Labanda, J., Sabaté, J., Llorens, J.: Chem. Eng. J. 166, 536–543 (2011)

    Article  CAS  Google Scholar 

  • Lambert, S., Job, N., D’Souza, L., Pereira, M.F.R., Pirard, R., Heinrichs, B., Figueiredo, J.L., Pirard, J.-P., Regalbuto, J.R.: J. Catal. 261, 23–33 (2009)

    Article  CAS  Google Scholar 

  • Langmuir, I.: J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  CAS  Google Scholar 

  • Li, L., Quinlivan, P.A., Knappe, D.R.U.: Carbon 40, 2085–2100 (2002)

    Article  CAS  Google Scholar 

  • Misra, D.N.: Surf. Sci. 18, 367–372 (1969)

    Article  Google Scholar 

  • Moreno-Castilla, C.: Carbon 42, 83–94 (2004)

    Article  CAS  Google Scholar 

  • Nacèra, Y., Aicha, B.: Chem. Eng. J. 119, 121–125 (2006)

    Article  Google Scholar 

  • Nataraj, S.K., Hosamani, K.M., Aminabhavi, T.M.: Desalination 249, 12–17 (2009)

    Article  CAS  Google Scholar 

  • Önal, Y., Akmil-Basar, C., SarIcI-Özdemir, Ç.: J. Hazard. Mater. 146, 194–203 (2007)

    Article  Google Scholar 

  • Páez, C.A., Poelman, D., Pirard, J.-P., Heinrichs, B.: Appl. Catal. B, Environ. 94, 263–271 (2010)

    Article  Google Scholar 

  • Potgieter, J.H.: J. Chem. Educ. 68, 349 (1991)

    Article  CAS  Google Scholar 

  • Rafatullah, M., Sulaiman, O., Hashim, R., Ahmad, A.: J. Hazard. Mater. 177, 70–80 (2010)

    Article  CAS  Google Scholar 

  • Raposo, F., De La Rubia, M.A., Borja, R.: J. Hazard. Mater. 165, 291–299 (2009)

    Article  CAS  Google Scholar 

  • Regalbuto, J.: In: Regalbuto, J. (ed.) Catalyst Preparation: Science and Engineering, pp. 297–318. CRC Press, Taylor & Francis Group, Boca Raton (2007)

    Google Scholar 

  • Stavropoulos, G.G., Zabaniotou, A.A.: Microporous Mesoporous Mater. 82, 79–85 (2005)

    Article  CAS  Google Scholar 

  • Stephenson, R.J., Duff, S.J.B.: Water Res. 30, 781–792 (1996)

    Article  CAS  Google Scholar 

  • Szygula, A., Guibal, E., Palacín, M.A., Ruiz, M., Sastre, A.M.: J. Environ. Manag. 90, 2979–2986 (2009)

    Article  CAS  Google Scholar 

  • Tan, I.A.W., Ahmad, A.L., Hameed, B.H.: J. Hazard. Mater. 154, 337–346 (2008)

    Article  CAS  Google Scholar 

  • Wang, S., Li, H.: Dyes Pigm. 72, 308–314 (2007)

    Article  CAS  Google Scholar 

  • Wang, L., Zhang, J., Zhao, R., Li, C., Li, Y., Zhang, C.: Desalination 254, 68–74 (2010)

    Article  CAS  Google Scholar 

  • Weber, W.J., Morris, J.C.: Advances in Water Pollution Research: Removal of Biologically Resistant Pollutants from Waste Water by Adsorption. Pergamon, Oxford (1962)

    Google Scholar 

  • Wong, Y.C., Szeto, Y.S., Cheung, W.H., McKay, G.: Langmuir 19, 7888–7894 (2003)

    Article  CAS  Google Scholar 

  • Wu, F.-C., Tseng, R.-L., Juang, R.-S.: J. Colloid Interface Sci. 283, 49–56 (2005)

    Article  CAS  Google Scholar 

  • Yamashita, J., Shioya, M., Kikutani, T., Hashimoto, T.: Carbon 39, 207–214 (2001)

    Article  CAS  Google Scholar 

  • Yan, Y., Zhang, M., Gong, K., Su, L., Guo, Z., Mao, L.: Chem. Mater. 17, 3457–3463 (2005)

    Article  CAS  Google Scholar 

  • Yu, J.-X., Li, B.-H., Sun, X.-M., Yuan, J., Chi, R.-a.: J. Hazard. Mater. 168, 1147–1154 (2009)

    Article  CAS  Google Scholar 

  • Zhou, G., Tian, H., Sun, H., Wang, S., Buckley, C.E.: Chem. Eng. J. 171, 1399–1405 (2011)

    Article  CAS  Google Scholar 

  • Zubizarreta, L., Arenillas, A., Pirard, J.-P., Pis, J.J., Job, N.: Microporous Mesoporous Mater. 115, 480–490 (2008)

    Article  CAS  Google Scholar 

  • Zubizarreta, L., Arenillas, A., Pis, J., Pirard, J.-P., Job, N.: J. Mater. Sci. 44, 6583–6590 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.P. is postdoctoral researcher of the F.R.S.-FNRS (Belgium). The Belgian authors thank the Fonds de Recherche Fondamentale Collective, the Ministère de la Region Wallonne and the Interuniversity Attraction Pole (IAP-P6/17) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Páez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Páez, C.A., Contreras, M.S., Léonard, A. et al. Effect of CO2 activation of carbon xerogels on the adsorption of methylene blue. Adsorption 18, 199–211 (2012). https://doi.org/10.1007/s10450-012-9394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-012-9394-2

Keywords

Navigation