Skip to main content
Log in

Effect of the pore geometry in the characterization of the pore size distribution of activated carbons

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

In this work, the characterization of Activated Carbons (AC) by using the independent pore models is discussed, with special emphasis on the issue of how the assumed pore geometry can affect the resulting Pore Size Distribution (rPSD) and on the problem of the unicity of the PSD when different probe molecules are used in adsorption experiments. A theoretical test was performed using virtual solids based in the so-called Mixed Geometry Model (MGM) (Azevedo et al. 2010). The MGM uses a kernel of adsorption isotherms generated by GCMC for different pore sizes and two pore geometries: slit and triangular. The adsorption isotherms of a virtual MGM solid were fitted with both the traditional Slit Geometry Model (SGM) and the Mixed Geometry Model (MGM). It is demonstrated that, by assuming a different pore geometry model from that of the real sample, different PSDs may be obtained by fitting adsorption isotherms of different probe gases. Finally, experimental results are shown which both point toward the MGM as an acceptable extension of the SGM and confirm that the MGM is a closer representation of the actual porous structure of most activated carbons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Azevedo, D.C.S., Rios, R.B., López, R.H., Torres, A.E.B., Cavalcante Jr, C.L., Toso, J.P., Zgrablich, G.: Characterization of the pore size distribution of activated carbons by using slit and triangular pore geometries. Appl. Surf. Sci. 256, 5191–5197 (2010)

    Article  CAS  Google Scholar 

  • Davies, G.M., Seaton, N.A., Vasiliadis, V.S.: Calculation of pore size distribution of activated carbons from adsorption isotherms. Langmuir 15, 8235–8245 (1999)

    Article  CAS  Google Scholar 

  • Davies, G.M., Seaton, N.A.: The effect of the choice of pore model on characterization of the internal structure of microporous carbons using pore size distributions. Carbon 36, 1473–1490 (1998)

    Article  CAS  Google Scholar 

  • Davies, G.M., Seaton, N.A.: Predicting adsorption equilibrium using molecular simulation. AIChE J. 46, 1753–1768 (2000)

    Article  CAS  Google Scholar 

  • Denoyel, R., Fernandez-Colinas, J., Grillet, Y., Rouquerol, J.: Assessment of the surface area and microporosity of activated charcoals from immersion calorimetry and nitrogen adsorption data. Langmuir 9, 515–518 (1993)

    Article  CAS  Google Scholar 

  • Do, D.D., Do, H.D.: Evaluation of 1-site and 5-site models of methane on its adsorption on graphite and in graphitic slit pores. J. Phys. Chem. B 109, 19288–19295 (2005)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: In: Danielli, J.F., Rosenberg, M.D., Cadenhead, D. (eds.) Progress in surface and membrane science, vol. 9. Academic Press, New York (1975)

    Google Scholar 

  • Furmaniak, S., Terzyk, A.P., Gauden, P.A., Harris, P.J.F., Kowalczyk, P.: Can carbon surface oxidation shift the pore size distribution curve calculated from Ar, N2 and CO2 adsorption isotherms? Simulation results for a realistic carbon model. J. Phys. Condens. Matter. 21, 315005–315014 (2009)

    Article  Google Scholar 

  • Gauden, P.A., Terzyk, A.P., Rychlicki, G., Kowalczyk, P., Cwiertnia, M.S.C., Garbacz, J.K.: Estimating the pore size distribution of activated carbons from adsorption data of different adsorbates by various methods. J. Colloid Interface Sci. 273, 39–63 (2004)

    Article  CAS  Google Scholar 

  • Gun’ko, V.M., Mikhalovsky, S.V.: Evaluation of slitlike porosity of carbon adsorbents. Carbon 42, 843–849 (2004)

    Article  Google Scholar 

  • Gusev, V.Y., O'Brien, J.A., Seaton, N.A.: A self-consistent method for characterization of activated carbons using supercritical adsorption and grand Canonical Monte Carlo simulations. Langmuir 13, 2815–2821 (1997)

    Article  CAS  Google Scholar 

  • Huang, Z.H., Kang, F., Huang, W.L., Yang, J.B., Liang, K.M., Cui, M.L., Cheng, Z.: Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM. J. Coll. Interf. Sci. 249, 453 (2002)

    Article  CAS  Google Scholar 

  • Jagiello, J., Thommes, M.: Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon 42, 1227–1232 (2004)

    Article  CAS  Google Scholar 

  • Jagiello, J., Ania, C.O., Parra, J.B., Jagiello, L., Pis, J.J.: Using DFT analysis of adsorption data of multiple gases including H2 for the comprehensive characterization of microporous carbons. Carbon 45, 1066–1071 (2007)

    Article  CAS  Google Scholar 

  • Jagiello, J., Kenvin, J., Oliver, J.P., Lupini, A.R., Contescu, C.I.: Using a new finite slit pore model for NLDFT analysis of carbon pore structure. Adsorption Sci. Technol 29, 769–780 (2011)

    Article  CAS  Google Scholar 

  • Lastoskie, C., Gubbins, K.E., Quirke, N.: Pore size distribution analysis of microporous carbons: A density functional theory approach. J. Phys. Chem. 97, 4786–4796 (1993)

    Article  CAS  Google Scholar 

  • Lee, J., Kim, J., Hyeon, T.: Recent progress in the synthesis of porous carbon materials. Adv. Mater. 18, 2073–2094 (2006)

    Article  CAS  Google Scholar 

  • Lueking, A.D., Kim, H.Y., Jagiello, J., Bancroft, K., Johnson, J.K., Cole, M.W.: Test of pore-size distributions deduced from inversion of simulated and real adsorption data. J. Low Temp. Phys. 157, 410–428 (2009)

    Article  CAS  Google Scholar 

  • Marsch, H., Rodríguez-Reinoso, F.: Activated Carbon. Elsevier, London (2006)

    Google Scholar 

  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., Thommes, M.: Quenched solid density functional theory and pore size analysis of micromesoporous carbons. Carbon 47, 1617–1728 (2009)

    Article  CAS  Google Scholar 

  • Prasad, M., Akkimardi, B.S., Rastogi, S.C., Rao, R.R., Srinivasan, K.: Heats of adsorption for charcoal-nitrogen systems. Carbon 37, 1641–1642 (1999)

    Article  CAS  Google Scholar 

  • Prauchner, M.J., Rodríguez-Reinoso, F.: Preparation of granular activated carbon for adsorption of natural gas. Microporous Mesoporous Mater. 109, 581–584 (2008)

    Article  CAS  Google Scholar 

  • Quirke, N., Tennison, S.R.R.: The interpretation of pore size distribution of microporous. Carbon 34, 1281–1286 (1996)

    Article  CAS  Google Scholar 

  • Ravikovitch, P.I., Vishnyakov, A., Russo, R., Neimark, A.V.: Unified approach to pore size characterization of microporous carbonaceous materials from N2, Ar, and CO2 adsorption isotherms. Langmuir 16, 2311–2320 (2000)

    Article  CAS  Google Scholar 

  • Rios, R.B., Silva, F.W.M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante Jr, C.L.: Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation. Adsorption 15, 271–277 (2009)

    Article  CAS  Google Scholar 

  • Rouquerol, F., Rouquerol, J., Sing, K.: Adsorption by powders and porous solids. Academic Press, San Diego (1999)

    Google Scholar 

  • Rouzaud, J.N., Clinard, C.: Quantitative high-resolution transmission electron microscopy: a promising tool for carbon materials characterization. Fuel Process. Technol. 77–78, 229–235 (2002)

    Article  Google Scholar 

  • Santos, C., Andrade, M., Vieira, A.L., Martins, A., Pires, J., Freire, C., Carvalho, A.P.: Templated synthesis of carbon materials mediated by porous clay heterostructures. Carbon 48, 4049–4056 (2010)

    Article  CAS  Google Scholar 

  • Scaife, S., Kluson, P., Quirke, N.: Characterization of porous materials by gas adsorption: do different molecular probes give different pore structures? J. Phys. Chem. B 104, 313–318 (2000)

    Article  CAS  Google Scholar 

  • Soares Maia, D.A., Sapag, K., Toso, J.P., López, R.H., Azevedo, D.C.S., Cavalcante Jr, C.L., Zgrablich, G.: Characterization of activated carbons from peach stones through the mixed geometry model. Microporous Mesoporous Mater. 134, 181 (2010)

    Article  CAS  Google Scholar 

  • Soares Maia, D.A., de Alexandre Oliveira, J.C., Toso, J.P., Sapag, K., López, R.H., Azevedo, D.C.S., Cavalcante Jr, C.L., Zgrablich, G.: Characterization of the PSD of activated carbons from peach stones for separation of combustion gas mixtures. Adsorption 17, 853–861 (2011)

    Article  CAS  Google Scholar 

  • Sweatman, M.B., Quirke, N.: Characterization of porous materials by gas adsorption at ambient temperature and high pressure. J. Phys. Chem. B 105, 1403–1411 (2001)

    Article  CAS  Google Scholar 

  • Terzyk, A.P., Furmaniak, S., Gauden, P.A., Harris, P.J.F., Kowalczyk, P.: Virtual porous carbons. In: Tascón, J.M.D. (ed.) Novel carbon adsorbents. Elsevier, London (2012)

    Google Scholar 

  • Toso, J.P., López, R.H., Azevedo, D.C.S., Cavalcante Jr, C.L., Prauchner, M.J., Rodríguez-Reinoso, F., Zgrablich, G.: Evaluation of a mixed geometry model for the characterization of activated carbons. Adsorption 17, 551–560 (2011)

    Article  CAS  Google Scholar 

  • Vishniakov, A., Ravikovitch, P.I., Neimark, A.V.: Molecular level models for CO2 adsorption in nanopores. Langmuir 15, 8736–8742 (1999)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from CONICET (Argentina), CNPq and PETROBRAS (Brazil) and the joint project CAPES/SPU (Brasil/Argentina, project CAPG 035-08) and the project MinCyT/CAPES Brasil/Argentina 2012-2013 (BR/11/06). The numerical works were done using the BACO parallel cluster located at Dpto. de Física—Instituto de Física Aplicada, Universidad Nacional de San Luis—CONICET, San Luis, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. C. S. Azevedo.

Additional information

G. Zgrablich: 1942–2012 In Memoriam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toso, J.P., Oliveira, J.C.A., Soares Maia, D.A. et al. Effect of the pore geometry in the characterization of the pore size distribution of activated carbons. Adsorption 19, 601–609 (2013). https://doi.org/10.1007/s10450-013-9483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-013-9483-x

Keywords

Navigation