Skip to main content

Advertisement

Log in

Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Adsorption of methane on twelve microporous carbon adsorbents of different origin and structural and energy characteristics was studied at the pressures up to 20 MPa. Specific capacities have been calculated for methane adsorption storage systems. The effectiveness of adsorption accumulation was analyzed in terms of structural and energy characteristics, packing density and thermodynamic parameters of methane adsorption. Differential molar isosteric heats of adsorption and absolute efficiency of adsorption accumulation systems were evaluated. The effects of increased packing density and proper shape of adsorbent material on the adsorption accumulation efficiency were considered. It was shown that a selection of an adsorbent with the most optimal porous structure and density should be adjusted for thermodynamic parameters of accumulation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. (m3(NTP)/m3) is the volume of methane at atmospheric pressure (101,325 Pa) and 293.15 K in 1 m3 of storage system.

Abbreviations

ANG:

Adsorbed natural gas

CNG:

Compressed natural gas

LNG:

Liquefied natural gas

SC:

Silicon carbide raw material

PM:

Polymer raw material

PT:

Peat raw material

NTP:

Normal temperature (293.15 K) and atmosphere pressure (101,325 Pa)

TVFM:

Theory of volume filling of micropores

VF:

Vegetable feed raw material

A :

Differential molar work of adsorption, J/mol

a :

Absolute adsorption, mmol/g

a 0 :

Limiting adsorption at temperature T, mmol/g

d :

Packing density of adsorbent, kg/m3

d cryst :

Crystalline density of adsorbent, kg/m3

δ g :

Density of bulk gas phase of adsorbate at given conditions of temperature and pressure, mmol/cm3

E :

Characteristic energy of adsorption for gas, J/mol

E 0 :

Characteristic adsorption energy of standard benzene vapor, kJ/mol

E CH4 :

Characteristic adsorption energy of methane, kJ/mol

ε :

Fraction of void space (between granules of adsorbent) in ANG system, %

f :

Fugacity of gas, Pa

f s :

Fugacity of saturated gas, Pa

h g :

Molar enthalpy of gas phase, kJ/mol

H 1 :

Differential molar enthalpy of adsorption system, kJ/mol

M :

Molecular mass, g/mol

m 0 :

Mass of regenerated adsorbent, g

µ :

Molar mass of adsorbate, g/mmol

N :

Total amount of gas introduced into a system, mmol

n :

Dimensionless parameter related to the width of the adsorption energy distribution

R :

Universal gas constant, J/(K mol)

ρ :

density of bulk gas phase of adsorbate at standard atmosphere pressure, kg/m3

ρ ad :

Average density of adsorbate, kg/m3

ρ g (P,T):

Density of bulk gas phase of adsorbate at given conditions of temperature and pressure, kg/m3

ρ L :

Density of bulk liquid, kg/m3

S BET :

Specific surface area, or BET surface area, m2/g

T :

Temperature, K

T 0 :

Boiling point, K

T cr :

Critical temperature, K

P :

Pressure, MPa

p s :

Saturated vapor pressure, Pa

q st :

Differential molar isosteric heat of adsorption, kJ/mol

U :

Absolute efficiency of gas adsorption accumulation, m3/m3

V :

Total geometric volume of the adsorption system, cm3

V sp :

Specific capacity of adsorption storage system, m3/m3

V a :

Specific volume of gas in adsorbed state, m3/m3

V ads :

Volume of an adsorbent with micropores, cm3

V He :

Volume of an adsorbent determined via helium pycnometry, cm

V g :

Specific volume of bulk gas phase, m3/m3

V 0 :

Volume of regenerated adsorbent, cm3/g

W 0 :

Micropore volume, cm3/g

x 0 :

Average effective half-width of micropores, nm

Z :

Compressibility factor of the equilibrium gas phase at pressure P and temperature T

ν g :

Specific gas phase volume, cm3/g

v 0 :

Specific reduced volume of the “adsorbent-adsorbate” system, cm3/g

a:

Adsorbed

ads:

Adsorbent

cr:

Critical

cryst:

Crystalline

g:

Gas phase

L:

Liquid

s:

Saturated

st:

Isosteric

References

  • Barrer, R.M., Papadopoulos, R.: The Sorption of Krypton and Xenon in Zeolites at High Pressures and Temperatures. I. Chabazite. Proc. R. Soc. A. 326(1566):315–330 (1972)

    Article  CAS  Google Scholar 

  • Bakaev, V.A.: One possible formulation of the thermodynamics of sorption equilibrium. Bull. Acad. Sci. USSR Div. Chem. Sci. 20, 2516–2520 (1971)

    Article  Google Scholar 

  • Balathanigaimani, M.S., Shim, W.G., Lee, J.W., Moon, H.: Adsorption of methane on novel corn grain-based carbon monoliths. Microporous Mesoporous Mater. 119(1–3), 47–52 (2009)

    Article  CAS  Google Scholar 

  • Blancoa, A.A.G., de Oliveira, J.C.A., López, R., Moreno-Pirajan, J.C., Giraldo, L., Zgrablich, G., Sapag, K.: A study of the pore size distribution for activated carbon monoliths and their relationship with the storage of methane and hydrogen. Colloids Surf. A Physicochem. Eng. Asp. 357, 74–83 (2010)

    Article  Google Scholar 

  • Celzard, A., Albiniak, A., Jasienko-Halat, M.: Methane storage capacities and pore textures of active carbons undergoing mechanical densification. Carbon. 43, 1990–1999 (2005)

    Article  CAS  Google Scholar 

  • Chkhaidze, E.V., Fomkin, A.A., Serpinskii, V.V., et al.: Methane adsorption on a microporous carbon adsorbent in the precritical and hypercritical regions. Russ. Chem. Bull. 35(4), 847–849 (1986)

    Article  Google Scholar 

  • Cleaver, Ph., Johnson, M., Ho, B.: A summary of some experimental data on LNG safety. J. Hazard. Mat. 140, 429–438 (2007)

    Article  CAS  Google Scholar 

  • Dubinin, M.M.: Physical adsorption of gases and vapors in micropores. In: Cadenhead, D.D. (ed.) Progress in Surface and Membrane Science, pp. 1–69. Academic Press, London (1975)

    Google Scholar 

  • Dubinin, M.M.: Microporous systems of carbon adsorbents. In: Carbon Adsorbents and their Industrial Application, pp. 100–115 Nauka, Moscow (1983) (in Russian)

  • Dubinin, M.M., Kadlets, O.: Adsorption of gases by microporous adsorbents. Communication 1. The nitrogen-microporous carbon adsorbent system. Russ. Chem. Bull. 33(3), 455–460 (1984)

    Article  Google Scholar 

  • Fenelonov, V.B.: Poristyi uglerod (Porous Carbon). Izd. Inst. Kataliza SO RAN, Novosibirsk (1995) (in Russian)

    Google Scholar 

  • Fedorov, N.F., Ivakhnyuk, G.K., Gavrilov, D.N., Tetenov, V.V., Smetanin, G.N., Samonin, V.V., Babkin, O.E., Zaitzev, Yu, A.: Carbon adsorbents from inorganic compounds of carbon. In: Carbon Adsorbents and their Industrial Applications. pp.20–33, Nauka, Мoscow (1983)

  • Fomkin A.A.: Adsorption of gases, vapors and liquids by microporous adsorbents. Adsorption 11(3), 425–436 (2005)

    Article  CAS  Google Scholar 

  • Fomkin, A.A., Sinitsyn, V.A.: Hydrogen adsorption on model nanoporous carbon adsorbents. Prot. Met. Phys. Chem. Surf. 44, 150–156 (2008)

    CAS  Google Scholar 

  • Fomkin, A.A., Shkolin, A.V., Men’shchikov, I.E., Pulin, A.L., Pribylov, A.A., and Smirnov, I.A.: Measurement of adsorption of methane at high pressures for alternative energy systems. Meas. Tech. 58, 1387–1391 (2016a)

    Article  CAS  Google Scholar 

  • Fomkin, A.A., Tsivadze, A.Y., Shkolin, A.V., Men’shchikov, I.E., Pulin, A.L.: A study of methane adsorption and accumulation on microporous carbon adsorbent in a wide temperature range. Prot. Met. Phys. Chem. Surf. 52(5):762–770 (2016b)

    Article  CAS  Google Scholar 

  • Gregg, S.J., Sing, K.S.W.: Adsorption, Surface Area and Porosity, 2nd edn. Academic Press Inc., San Diego (1982)

    Google Scholar 

  • Giraldo, L., Moreno-Piraján, J.C.: Novel activated carbon monoliths for methane adsorption obtained from coffee husks. Mater. Sci. Appl. 2, 331–339 (2011)

    CAS  Google Scholar 

  • GOST 2939-63 Gases. Conditions for the determination of volume (1963)

  • Harting, P., Weingart, K.: Thermodynamische Beschreibung von hochdruck-adsorptions-isotermen. ZFT-Mitt. 85, 127–134 (1984)

    CAS  Google Scholar 

  • How is gas delivered to consumers: [Electronic resource] // Gazprom 2003–2016. http://www.gazprominfo.com/articles/gasification/ (date: 01.06.2016)

  • Im, J.S., Jung, M.J., Lee, Y.S.: Effects of fluorination modification on pore size controlled electrospun activated carbon fibers for high capacity methane storage. J. Coll. and Int. Sci. 339, 31–35 (2009)

    Article  CAS  Google Scholar 

  • ISO 697:1981. Surface active agents. Washing powders. Determination of apparent density. Method by measuring the mass of a given volume

  • ISO 60: 1977 Plastics. Determination of apparent density of material that can be poured from a specified funnel

  • Kockrick, E., Schrage, C., Borchardt, L.: Ordered mesoporous carbide derived carbons for high pressure gas storage. Carbon. 48, 1707–1717 (2010)

    Article  CAS  Google Scholar 

  • Koh, C.A: Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 31, 157–167 (2002)

    Article  CAS  Google Scholar 

  • Kuznetsova, T.A., Tolmachev, A.M., Kryuchenkova, N.G., Firsov, D.A., Fomkin, A.A.: Thermodynamics of adsorption of krypton, xenon, nitrogen, and oxygen on microporous active carbon at temperatures above critical values. Prot. Met. Phys. Chem. Surf. 49(4), 367–372 (2013)

    Article  CAS  Google Scholar 

  • Lozano-Castelló, D., Cazorla-Amorós, D., Linares-Solano, A., Quinn, D.F.: Influence of pore size distribution on methane storage at relatively low pressure: preparation of activated carbon with optimum pore size. Carbon. 40, 989–1002 (2002)

    Article  Google Scholar 

  • Men’shchikov, I.E., Fomkin, A.A., Tsivadze A.Y., Shkolin, A.V., Strizhenov, E.M., Pulin, A.L.: Methane adsorption on microporous carbon adsorbents in the region of supercritical temperatures. Prot. Met. Phys. Chem. Surf. 51(4), 493–498 (2015)

    Article  Google Scholar 

  • Men’shchikov, I. E., Fomkin, A. A., Arabei, A. B.., Shkolin, A. V., Strizhenov, E. M.: Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation. Prot. Met. Phys. Chem. Surf. 52(4), 575–580 (2016)

    Article  Google Scholar 

  • Menon, P.G.: Adsorption at high pressures. Chem. Rev. 68(3), 277–294 (1968)

    Article  CAS  Google Scholar 

  • Mukhin, V.M., Tarasov, A.V., Klushin, V.N.: Active Carbon of Russia. Metallurgiya, Moscow (2000) (in Russian)

    Google Scholar 

  • Mukhin, V.M., Zubova, I.D., Gur’yanov, V.V., Kurilkin, A.A., Gostev, V.S.: New technologies of active carbon production from thermosetting materials.: Sorbtsionnye i Khromatograficheskie Protsessy 9, 191–195 (2009)

    Google Scholar 

  • Najibi, H., Chapoy, A., Tohidi, B.: Methane/natural gas storage and delivered capacity for activated carbons in dry and wet conditions. Fuel. 87, 7–13 (2008)

    Article  CAS  Google Scholar 

  • Nguyen C., Do D.D.: The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon 39(9), 1327–1336 (2001)

    Article  CAS  Google Scholar 

  • Novikova, S.I.: Thermal expansion of solids. Nauka, Moscow (1974) (in Russian)

    Google Scholar 

  • Ovcharenko, I.E., Tolmachev, A.M., Fomkin, A.A.: Calculation of adsorption equilibria of individual compounds on microporous adsorbents in a supercritical temperature range. Russ. Chem. Bull. 42(9), 1606–1608 (1993)

    Article  Google Scholar 

  • Perrin, A., Celzard, A., Albiniak, A.: NaOH activation of anthracites: effect of hydroxide content on pore textures and methane storage ability. Microporous Mesoporous Mater. 81, 31–40 (2005)

    Article  CAS  Google Scholar 

  • Polyakov, N. S., Petukhova, G. A.: Extension of the theory of volume filling of micropores to adsorption in supermicropores. Adsorption 11(3), 357–362 (2005)

    Article  CAS  Google Scholar 

  • Pribylov, A.A., Serpinsky, V.V., Kalashnikov, S.M.: Adsorption of gases by microporous adsorbents under pressures up to hundreds megapascals. Zeolites 11, 846–849 (1991)

    Article  CAS  Google Scholar 

  • Rios, R.B., Silva, F. W.M., Torres, A.E.B., Azevedo, D.C.S., Cavalcante, C.L.: Adsorption of methane in activated carbons obtained from coconut shells using H3PO4 chemical activation. Adsorption 15, 271–277 (2009)

    Article  CAS  Google Scholar 

  • Salehi, E., Taghikhani, V., Ghotbi, C., Lay, E. N., Shojaei, A.: Theoretical and experimental study on the adsorption and desorption of methane by granular activated carbon at 25 °C. J. Nat. Gas Chem. 16(4), 415–422 (2007)

    Article  CAS  Google Scholar 

  • Shkolin, A.V., Fomkin, A.A.: Thermodynamics of methane adsorption on the microporous carbon adsorbent ACC. Russ. Chem. Bull. 57, 1799–1805 (2008)

    Article  CAS  Google Scholar 

  • Shkolin A.V., Fomkin A.A.: Theory of volume filling of micropores applied to the description of methane adsorption on the microporous carbon adsorbent AUK. Russ. Chem. Bull. 58(4), 717–721, (2009)

    Article  CAS  Google Scholar 

  • Shkolin, A.V., Fomkin, A.A., Sinitsyn, V.A.: Adsorption of methane on AUK microporous carbon adsorbent. Colloid J. 70, 796–801 (2008)

    Article  CAS  Google Scholar 

  • Shkolin, A.V., Fomkin, A.A., Sinitsyn, V.A.: Adsorption of n-pentane on a microporous carbon adsorbent with a narrow pore size distribution. Prot. Met. Phys. Chem. Surf. 46, 184–190 (2010)

    Article  CAS  Google Scholar 

  • Solar, C., Garcia Blanco, A.G., Vallone, A. and Sapag, K.: Adsorption of Methane in Porous Materials as the Basis for the Storage of Natural Gas, In: Potocnik, P., (ed.) Natural Gas, pp. 205–244 (2010). http://www.intechopen.com/books/natural-gas/adsorption-of-methane-in-porous-materials-as-the-basis-for-the-storage-of-natural-gas

  • Strizhenov, E. M., Shkolin, A. V., Fomkin, A. A., Pribylov, A. A., Zherdev, A. A., and Smirnov, I. A.: Adsorption of methane on AU-5 microporous carbon adsorbent. Prot. Met. Phys. Chem. Surf. 49(5), 521–527 (2013)

    Article  CAS  Google Scholar 

  • Sychev, V.V., Vasserman, A.A., Zagoruchenko, V.A., Kozlov, A.D., Spiridonov, G.A., Tzymarnyi: Thermodynamic Properties of Methane. Izd. Standartov, Moscow (1979)

    Google Scholar 

  • Thomas, J.M.: Microscopic studies of graphite oxidation. In: Walker, Jr. P.L. (ed.) Chemistry and Physics of Carbon, vol. 1, pp. 121–202. Marcel Dekker, New York (1965)

    Google Scholar 

  • Tolmachev, A.M., Dubinin, M.M., Belousova, M.E., Fomkin, A.A.: Construction of characteristic adsorption curves for individual substances on microporous adsorbents and application of the TMVF at supercritical temperatures. Russ. Chem. Bull. 36(1), 11–14 (1987)

    Article  Google Scholar 

  • Tolmachev A.M., Kuznetsova, T.A., Godovikov, I.A.: Thermodynamics of adsorption on microporous adsorbents above critical temperatures. Prot. Met. Phys. Chem. Surf. 47(3), 281–285 (2011)

    Article  CAS  Google Scholar 

  • Unger, K.K., Rouquerol, J., Sing, K.S.W., Kral, H. (eds.) Characterization of Porous Solids. In: Proceedings of COPS-I, Bad-Soden, Germany, May 1987, Elsevier, Amsterdam, 645 (1988)

  • Vasil’ev, Y.N., Gritzenko, A.I., Chirikov, K.Y.: Gas fueling of transport. Nedra, Moscow (1995) (Russian)

    Google Scholar 

  • Wang, L., Gardeler, H., Gmehling, J.: Model and experimental data research of natural gas storage for vehicular usage. Sep. Purif. Technol. 12, 35–41 (1997)

    Article  CAS  Google Scholar 

  • Yan-Yan F., Wen Y., Wei C.: K2S-activated carbons developed from coal and their methane adsorption behaviors. Chin. Phys. B. 23(10), 108201 (2014)

    Article  Google Scholar 

  • Yeon, Sun-Hwa, Osswald, S., Gogotsi, Y.: Enhanced methane storage of chemically and physically activated carbide-derived carbons. J. Power Sources. 191, 560–567 (2009)

    Article  CAS  Google Scholar 

  • Yevi, G.Y., Rogers, R.E.: Storage of fuel in hydrates for natural gas vehicles. J. Energy Resour. Technol. 118, 209–213 (1996)

    Article  Google Scholar 

  • Zhang, H., Chen, J., Guo, Sh: Preparation of natural gas adsorbents from high-sulfur petroleum coke. Fuel. 87, 304–312 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Ministry of Education and Science in the framework of the Federal Target Program “Research and development on priority directions of scientific and technological complex of Russia for 2014–2020”. Agreement No. 14.607.21.0079, unique project identifier: RFMEFI60714X0079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Men’shchikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Y. et al. Adsorption accumulation of natural gas based on microporous carbon adsorbents of different origin. Adsorption 23, 327–339 (2017). https://doi.org/10.1007/s10450-016-9854-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-016-9854-1

Keywords

Navigation