Skip to main content
Log in

A comparison of airborne and dust-borne allergens and toxins collected from home, office and outdoor environments both in New Haven, United States and Nanjing, China

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

In this study, the airborne and dust-borne concentrations of endotoxin, (1,3)-β-d-glucan and five house dust allergens were measured in office, home, and outdoor environments both in New Haven, United States and Nanjing, China. Air samples were collected using a BioSampler at a flow rate of 12.5 l/min for 30 min. Dust samples were simultaneously collected using a surface sampler. Dust samples went through extraction and dilution before analysis, while air samples were analyzed directly. Limulus Amoebocyte Lysate (LAL) Pyrochrome and Glucatell assays were used to quantify endotoxin and (1,3)-β-d-glucan concentration levels, respectively. Enzyme-linked sorbent assay was used to measure the dust mites, cat, dog, and cockroach allergens. The experimental results indicated that endotoxin, (1,3)-β-d-glucan and allergen concentrations vary greatly both with samples and environments. In all tested environments, endotoxin concentration ranged from 0.8 to 83.7 ng/m3 for air, and 7.8 to 14.3 ng/mg for dust. (1,3)-β-d-glucan concentration ranged from 0.1 to 9.8 ng/m3 for air, and 6.6 to 110 ng/mg for dust. Cockroach allergens were detected only in New Haven office and outdoor environments, and other allergens ranged from 0.1 to 90 ng/mg for dust samples, and from 1.5 to 1,282 ng/m3 for air samples. In general, similar profiles of allergens and toxins were observed in New Haven and Nanjing environments. Linear regression analysis showed that there were better endotoxin and (1,3)-β-d-glucan linear correlations (R 2 = 0.78, 0.87, respectively) between the dust and air samples compared to those of the allergens Der f 1 and Der p 1 (R 2 = 0.5, 0.7, respectively). This research contributes to the development of robust biological exposure assessment and the elaboration of airborne and dust-borne bio-mass in the living environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chew, G. L., Rogers, C., Burge, H. A., Muilenberg, M. L., & Gold, D. R. (2003). Dustborne and airborne fungal propagules represent a different spectrum of fungi with differing relations to home characteristics. Allergy, 58, 13–20. doi:10.1034/j.1398-9995.2003.00013.x.

    Article  CAS  Google Scholar 

  • Custis, N. J., Woodfolk, J. A., Vaughan, J. W., & Platts-Mills, T. A. E. (2003). Quantitative measurement of airborne allergens from dust mites, dogs, and cats using an ion-charging device. Clinical and Experimental Allergy, 33, 986–991. doi:10.1046/j.1365-2222.2003.01706.x.

    Article  CAS  Google Scholar 

  • Custovic, A., Woodcock, H., Craven, M., Hassall, R., Hadley, E., Simpson, A., et al. (1999). Dust mite allergens are carried on not only large particles. Pediatric Allergy & Immunology, 10, 258–260. doi:10.1034/j.1399-3038.1999.00050.x.

    Article  CAS  Google Scholar 

  • Czop, J. K., & Kay, J. (1991). Isolation and characterization of beta-glucan receptors on human mononuclear phagocytes. The Journal of Experimental Medicine, 73, 1511–1520. doi:10.1084/jem.173.6.1511.

    Article  Google Scholar 

  • Dales, R., Miller, D., Ruest, K., Guay, M., & Judek, S. (2006). Airborne endotoxin is associated with respiratory illness in the first 2 years of life. Environmental Health Perspectives, 114, 610–614.

    CAS  Google Scholar 

  • Douwes, J., Thorne, P., Pearce, N., & Heederik, D. (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Hygiene, 47, 187–200. doi:10.1093/annhyg/meg032.

    Article  CAS  Google Scholar 

  • Douwes, J., Versloot, P., Hollander, A., Heederik, D., & Doekes, G. (1995). Influence of various dust sampling and extraction methods on the measurement of airborne endotoxin. Applied and Environmental Microbiology, 61, 1763–1769.

    CAS  Google Scholar 

  • Duchaine, C., Thorne, P. S., Mériaux, A., Grimard, Y., Whitten, P., & Cormier, Y. (2001). Comparison of endotoxin exposure assessment by bioaerosol impinger and filter-sampling methods. Applied and Environmental Microbiology, 67, 2775–2780. doi:10.1128/AEM.67.6.2775-2780.2001.

    Article  CAS  Google Scholar 

  • Foto, M., Plett, J., Berghout, J., & Miller, J. (2004). Modification of the limulus amebocyte lysate assay for the analysis of glucan in indoor environments. Analytical and Bioanalytical Chemistry, 379, 156–162. doi:10.1007/s00216-004-2583-4.

    Article  CAS  Google Scholar 

  • Kreiss, K. (1989). The epidemiology of building-related complaints and illness. Occupational Medicine (Philadelphia, PA), 4, 575–592.

    CAS  Google Scholar 

  • Leaderer, B. P., Belanger, K., Triche, E., Holford, T., Gold, D. R., Kim, Y., et al. (2002). Dust mite, cockroach, cat, and dog allergen concentrations in homes of asthmatic children in the northeastern United States: Impact of socioeconomic factors and population density. Environmental Health Perspectives, 110, 419–425.

    Google Scholar 

  • Lee, S. Y., Choi, J., Han, K., & Song, J. Y. (1999). Removal of endotoxin during purification of poly(3-hydroxybutyrate) from gram-negative bacteria. Applied and Environmental Microbiology, 65, 2762–2764.

    CAS  Google Scholar 

  • Lester, E. D., & Ponce, A. (2002). An anthrax smoke detector: online detection of aerosolized bacterial spores. IEEE Engineering in Medicine and Biology Magazine, 21, 38–42.

    Article  Google Scholar 

  • Lin, X., Reponen, T. A., Willeke, K., Grinshpun, S. A., Foarde, K. K., & Ensor, D. S. (1999). Long-term sampling of airborne bacteria and fungi into a non-evaporating liquid. Atmospheric Environment, 33, 4291–4298. doi:10.1016/S1352-2310(99)00169-7.

    Article  CAS  Google Scholar 

  • Luczynska, Sterne, Bond, Azima, & Burney. (1998). Indoor factors associated with concentrations of house dust mite allergen, der p 1, in a random sample of houses in Norwich, UK. Clinical and Experimental Allergy, 28, 1201–1209. doi:10.1046/j.1365-2222.1998.00410.x.

    Article  CAS  Google Scholar 

  • Matsui, E. C., Wood, R. A., Rand, C., Kanchanaraksa, S., Swartz, L., Curtin-Brosnan, J., et al. (2003). Cockroach allergen exposure and sensitization in suburban middle-class children with asthma. The Journal of Allergy and Clinical Immunology, 112, 87–92. doi:10.1067/mai.2003.1588.

    Article  CAS  Google Scholar 

  • Proud, D., Bailey, G. S., Naclerio, R. M., Reynolds, C. J., Cruz, A. A., Eggleston, P. A., et al. (1992). Tryptase and histamine as markers to evaluate mast cell activation during the responses to nasal challenge with allergen, cold, dry air, and hyperosmolar solutions. The Journal of Allergy and Clinical Immunology, 89, 1098–1110. doi:10.1016/0091-6749(92)90293-B.

    Article  CAS  Google Scholar 

  • Rylander, R. (1999). Indoor air-related effects and airborne (1-3)-beta-d-glucan. Environmental Health Perspectives, 107, 501–503. doi:10.2307/3434634.

    Article  Google Scholar 

  • Rylander, R. (2005). (1→3)-β-d-glucan in the environment: A risk assessment. In S.-H. Young & V. Castranova (Eds.), Toxicology of (1→3)-β- d -glucans (pp. 53–64). Taylor & Francis: Boca Raton, FL.

    Google Scholar 

  • Rylander, R., Thorn, J., & Attefors, R. (1999). Airways inflammation among workers in a paper industry. European Respiratory Journal, 13, 1151–1157. doi:10.1034/j.1399-3003.1999.13e35.x.

    Article  CAS  Google Scholar 

  • Rylander, R., Persson, K., Goto, H., Yuasa, K., Shigenori, T., & Aalberse, R. C. (1992). Airborne 1, 3- Beta-d-Glucan may be related to symptoms in sick buildings. Indoor and Built Environment, 1, 263–267. doi:10.1177/1420326X9200100502.

    Article  CAS  Google Scholar 

  • Sohy, C., Lieutier-Colas, F., Casset, A., Meyer, P., Pauli, G., Pons, F., et al. (2005). Dust and airborne endotoxin exposure in dwellings in the Strasbourg Metropolitan Area (France). Allergy, 60, 541–542. doi:10.1111/j.1398-9995.2005.00742.x.

    Article  CAS  Google Scholar 

  • Solomon, G. M., Hjelmroos-Koski, M., Rotkin-Ellman, M., & Hammond, S. K. (2006). Airborne mold and endotoxin concentrations in New Orleans, Louisiana, after flooding, October through November 2005. Environmental Health Perspectives, 114, 1410–1420.

    Article  CAS  Google Scholar 

  • Thorn, J., & Rylander, R. (1998). Airways inflammation and glucan in a rowhouse area. American Journal of Respiratory and Critical Care Medicine, 157, 1798–1803.

    CAS  Google Scholar 

  • Thorne, P. S. (2000). Inhalation toxicology models of endotoxin and bioaerosol-induced inflammation. Toxicology, 152, 13–23. doi:10.1016/S0300-483X(00)00287-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Peking University “100 Scholar Program” Fund and the National Science Foundation of China, Grant 20877004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maosheng Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, M., Wu, Y., Zhen, S. et al. A comparison of airborne and dust-borne allergens and toxins collected from home, office and outdoor environments both in New Haven, United States and Nanjing, China. Aerobiologia 25, 183–192 (2009). https://doi.org/10.1007/s10453-009-9123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-009-9123-9

Keywords

Navigation