Skip to main content

Advertisement

Log in

The air spora of an orchid greenhouse

  • Original Paper
  • Published:
Aerobiologia Aims and scope Submit manuscript

Abstract

The orchid collection of the ELTE Botanical Garden, Budapest, Hungary was monitored for airborne fungi using viable and non-viable air-sampling methods (Hirst-type and a 3-stage Andersen sampler) with three different culture media. A new culture method was also applied to identify fungal spores from Hirst-type samples. The aim of this study was to determine the diversity, human- and phytopathological potential of the air spora. To find out sources of airborne fungi, samples were collected from the air in an adjacent greenhouse and outdoors, and from necrotic plants. A total of 58 genera were found in the air samples. Cladosporium and Penicillium spp. were common members of the airborne biota. A high proportion (27.5%) of identified genera may be presented as a member of microbial consortium associated with the orchids. Airborne fungi potentially pathogenic to humans were also detected. One species, Zygosporium masonii, was new to Hungary. Statistical analysis indicated that conditions of sampling had significant effects. The principal component analysis elucidated the three principal components representing 75.34% of the total variance; the clusters of variables were related to the three types of culture media. Relative abundance of small-sized spores was high, presumably because of the fungal species composition and accelerated sedimentation of large spores in still air. Apparently, in the studied orchid greenhouse, a specific mycobiota developed due to the climate and hosts (Orchideaceae) grown there.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410.

    CAS  Google Scholar 

  • Andersen, A. A. (1958). A new sampler for the collection, sizing and enumeration of viable airborne bacteria. Journal of Bacteriology, 76, 471–484.

    CAS  Google Scholar 

  • Askew, D. J., & Laing, M. D. (1993). An adapted selective medium for the quantitative isolation of Trichoderma species. Plant Pathology, 42, 686–690.

    Article  Google Scholar 

  • Atlas, R. M. (1946). Handbook of microbial media (3rd ed.). Boca Raton: CRC Press.

    Google Scholar 

  • Bayman, P., & Tupac Otero, J. (2006). Microbial endophytes of orchid roots. In B. Schulz, C. Boyle, & T. Sieber (Eds.), Microbial root endophytes (pp. 153–173). New York: Springer.

    Chapter  Google Scholar 

  • Bernard, N. (1909). L’évolution dans la symbiose. Le orchidées et leurs champignons commensaux. Annals de Sciences Naturelles Botanique, 9, 1–196.

    Google Scholar 

  • Blomquist, G., & Andersson, B. (1994). Measurements of microorganisms in non-industrial environments in northern Sweden. In R. A. Samson, B. Flanningan, M. E. Flanningan, A. P. Verhoeff, O. C. G. Adan, & E. S. Hoekstra (Eds.), Health impaction of fungi in indoor environments. Air Quality Monographs 2 (pp. 39–47). Amsterdam: Elsevier Science.

    Google Scholar 

  • Booth, C. (1971). The genus Fusarium. London: CMI, Eastern Press.

    Google Scholar 

  • Brundrett, M. C. (2007). Scientific approaches to Australian temperate terrestrial orchid conservation. Australian Journal of Botany, 55, 293–307.

    Article  Google Scholar 

  • Currah, R. S., Zelmer, C. D., Hambleton, S., & Richardson, K. A. (1997). Fungi from orchid mycorrhizas. In J. Arditti & A. Pridgeon (Eds.), Orchid Biology: Reviews and perspectives Volume 7 (pp. 117–170). Lancaster: Kluwer Academic Publishers.

    Google Scholar 

  • Divakaran, M., Pillai, G. S., Babu, K. N., & Peter, K. V. (2008). Isolation and fusion of protoplasts in Vanilla species. Current Science, 94(1), 115–120.

    CAS  Google Scholar 

  • Ellis, M. B. (1971). Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute.

    Google Scholar 

  • Feller, W. (1950). An introduction to probability theory and its applications. New York: Wiley.

    Google Scholar 

  • Fitton, M., & Holliday, P. (1970). Myrothecium roridum. C.M.I. Descriptions of Pathogenic Fungi and Bacteria No. 253. Ferry Lane: Commonwealth Mycological Institute.

    Google Scholar 

  • Friedrich, S., Gebelein, D., & Boyle, C. (2005). Control of Botrytis cinerea in glasshouse fuchsia by specific climate management. European Journal of Plant Pathology, 111, 249–262.

    Article  Google Scholar 

  • Frinking, H. D. (1991). Aerobiology of ‘closed’ agricultural systems. Grana, 30, 481–485.

    Article  Google Scholar 

  • Frinking, H. D., & Scholte, B. (1983). Dissemination of mildew spores in a glasshouse. Philosophical Transactions of the Royal Society of London, B, 302, 575–582.

    Article  Google Scholar 

  • Frinking, H. D., Gorissen, A., & Verheul, M. J. (1987). Dissemination of spores in a glasshouse: Pattern or chaos? International Journal of Biometeorology, 31, 147–156.

    Article  Google Scholar 

  • Gregory, P. H. (1961). The Microbiology of the Atmosphere. London: Leonard Hill.

    Google Scholar 

  • Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species-opportunistic, avirulent plant symbionts. Nature reviews. Microbiology, 2(1), 43–56.

    CAS  Google Scholar 

  • Hausbeck, M. K., & Pennypacker, S. P. (1991). Influence of grower activity on concentrations of airborne conidia of Botrytis cinerea among geranium cuttings. Plant Disease, 75, 1236–1243.

    Article  Google Scholar 

  • Hirst, J. M. (1952). An automatic volumetric spore trap. Annals of Applied Biology, 39, 257–265.

    Article  Google Scholar 

  • Hislop, E. C. (1969). Splash dispersal of fungus spores and fungicides in the laboratory and greenhause. Annals of Applied Biology, 63, 71–80.

    Article  Google Scholar 

  • Illyés, Z., Halász, K., Rudnóy, S., Ouanphanivanh, N., Garay, T., & Bratek, Z. (2009). Changes in the diversity of the mycorrhizal fungi of orchids as a function of the water supply of the habitat. Journal of Applied Botany and Food Quality, 83(28), 28–36.

    Google Scholar 

  • Jarvis, W. R. (1962). The dispersal of spores of Botrytis cinerea Fr. in a raspberry plantation. Transactions of the British mycological Society, 45, 549–559.

    Article  Google Scholar 

  • Jensen, D. F., Knudsen, I. M. B., Lubeck, M., Mamarabadi, M., Hockenhull, J., & Jensen, B. (2007). Development of a biocontrol agent for plant disease control with special emphasis on the near commercial fungal antagonist Clonostachys rosea strain `IK726’. Australasian Plant Pathology, 36(2), 95–101.

    Article  Google Scholar 

  • Kerssies, A. (1993a). Horizontal and vertical distribution of airborne conidia of Botrytis cinerea in gerbera crop grown under glass. Netherlands Journal of Plant Pathology, 99, 303–311.

    Article  Google Scholar 

  • Kerssies, A. (1993b). Influence of environmental conditions on dispersal of Botrytis cinerea conidia and on post-harvest inferction of gerbera flowers grown under glass. Plant Pathology, 42, 754–762.

    Article  Google Scholar 

  • Klich, M. A. (2002). Identification of common Aspergillus species. Utrecht: Centraalbureau voor Schimmelcultures.

    Google Scholar 

  • Ko, W. H., & Hora, F. K. (1971). A selective medium for the quantitative determination of Rhizoctonia solani in soil. Phytopathology, 61, 707–710.

    Article  Google Scholar 

  • Li, D.-W., & LaMondia, J. (2009). Airborne fungi associated with ornamental plant propagation in greenhouses. Aerobiologia, 26(1), 15–28.

    Article  CAS  Google Scholar 

  • Li, D.-W., & Yang, C. S. (2004). Notes on indoor fungi I: New records and noteworthy fungi from indoor environments. Mycotaxon, 89(2), 473–488.

    Google Scholar 

  • Magyar, D., Barasits, T., Fischl, G., & Fernando, W. G. D. (2006). First record of the natural occurrence of the teleomorph of Leptosphaeria maculans on oilseed rape and airborne dispersal of ascospores in Hungary. Journal of Phytopathology, 154, 428–431.

    Article  Google Scholar 

  • Magyar, D., Frenguelli, G., Bricchi, E., Tedeschini, E., Csontos, P., Li, D.-W., et al. (2009). The biodiversity of air spora in an Italaian vineyard. Aerobiologia, 25, 99–109.

    Article  Google Scholar 

  • Miura, K., & Kudo, Y. M. (1970). An agar-medium for aquatic Hyphomycetes. Transactions of the Mycological Society of Japan, 11, 116–118.

    Google Scholar 

  • Monsó, E., Magarolas, R., Badorrey, I., Radon, K., Nowak, D., & Morera, J. (2002). Occupational asthma in greenhouse flower and ornamental plant growers. American Journal of Respiratory and Critical Care Medicine, 165(7), 954–960.

    Google Scholar 

  • Nirenberg, H. (1976). Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der Biologische Bundesanstalt für Land-und Forstwirtschaft, Berlin-Dahlem, 169, 1–117.

    Google Scholar 

  • Rajasab, A. H., & Ramalingam, A. (1989). Splash dispersal in Colletotrichum graminicola (Ces.) Wilson, the causal organism of anthracnose of sorghum. Proceedings of the Indian Academy of Sciences, 99(5), 445–451.

    Google Scholar 

  • Richardson, K., Currah, R., & Hambleton, S. (1993). Basidiomycetous endophytes from the roots of neotropical epiphytic Orchideaceae. Lindleyana, 8(3), 127–137.

    Google Scholar 

  • Rodolfi, M., Lorenzi, E., & Picco, A. M. (2003). Study of the occurrence of greenhouse microfungi in a Botanical Garden. Journal of Phytopathology, 151(11–12), 591–599.

    Article  Google Scholar 

  • Rossi, V., Pattori, E., Languasco, L., & Giousè, S. (2000). Dispersal of Fusarium species causing head blight of winter wheat under field conditions. In H. I. Nierenberg (Ed.), Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, 377, 6th European Fusarium seminar and third COST 835 workshop of agriculturally important toxigenic fungi (pp. 45–46). Berlin: Parey Buchverlag.

    Google Scholar 

  • Samson, R. A., Hoekstra, E. S., Frisvad, J. C., & Filtenborg, O. (2000). Introduction to food—and airborne fungi. Utrecht: Centraalbureau Voor Schimmelcultures.

    Google Scholar 

  • Schepers, H. T. A. M. (1984). A pattern in the appearence of cucumber powdery mildew in Duch glasshouses. Netherlands Journal of Plant Pathology, 90, 247–256.

    Article  Google Scholar 

  • Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.

    Article  Google Scholar 

  • Sutton, J. C., Swanton, C. J., & Gillespie, T. J. (1978). Relation of weather variables and host factors to incidence of airborne spores of Botrytis squamosa. Canadian Journal of Botany, 56, 2460–2469.

    Article  Google Scholar 

  • Taubenhaus, J. J. (1920). Diseases of greenhouse crops and their control. New York: E. P. Dutton.

    Google Scholar 

  • Tsavkelova, E. A., Cherdyntseva, T. A., Lobakova, E. S., Kolomeitseva, G. L., & Netrusov, A. I. (2001). Microbiota of the Orchid Rhizoplane. Microbiology, 70(4), 492–497.

    Article  CAS  Google Scholar 

  • Tupac Otero, J., Ackerman, J. D., & Bayman, P. (2002). Diversity and host specificity of endophytic Rhizoctonia-like fungi from tropical orchids. American Journal of Botany, 89, 1852–1858.

    Article  Google Scholar 

  • Vajna, L. (1987). Új adatok két ismert gombafaj mikoparazitikus tulajdonságairól. (in Hungarian). Mikológiai Közlemények, 26(2–3), 99–101.

    Google Scholar 

  • Walkey, D. G., & Harvey, R. (1966). Spore discharge rhythms in Pyrenomycetes. A survey of the periodicity of spore discharge in Pyrenomycetes. Transactions of the British mycological Society, 49(4), 583–592.

    Article  Google Scholar 

  • Wang, S., Boulard, T., & Haxaire, R. (1999). Air speed profiles in a naturally ventilated greenhouse with a tomato crop. Agricultural and Forest Meteorology, 96(4), 181–188.

    Article  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. H. Innes, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols (pp. 315–322). San Diego, CA: Academic Press.

    Google Scholar 

  • World Health Organization Regional Office for Europe. (2009). WHO Guidelines for Indoor Air Quality. Dampness and mould. Copenhagen: WHO Regional Office for Europe.

    Google Scholar 

  • Yuan, Z., Chen, Y., & Yang, Y. (2009). Diverse non-mycorrhizal fungal endophytes inhabiting an epiphytic, medicinal orchid (Dendrobium nobile): estimation and characterization. World Journal of Microbiology & Biotechnology, 25(2), 295–303.

    Article  Google Scholar 

  • Zadoks, J. C. (1967). International dispersal of fungi. Netherlands Journal of Plant Pathology, 73(1), 61–80.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. László Vajna (Plant Protection Institute of the Hungarian Academy of Science) for his help in the identification of the Coelomycetes and to Dr. Zoltán Naár for identification of the Trichoderma spp. This work was supported by the Hungarian Scientific Research Fund (OTKA) F67908 and K67688.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donát Magyar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magyar, D., Eszéki, E.R., Oros, G. et al. The air spora of an orchid greenhouse. Aerobiologia 27, 121–134 (2011). https://doi.org/10.1007/s10453-010-9182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10453-010-9182-y

Keywords

Navigation